, Volume 200, Issue 3, pp 413–428 | Cite as

Effect of the inbreeding depression in progeny fitness of runner bean (Phaseolus coccineus L.) and it is implications for breeding

  • Ana M. González
  • Antonio M. De Ron
  • María Lores
  • Marta Santalla


Moderate levels of selfing despite high inbreeding depression (ID) make runner bean an excellent model for mixed-mating reproductive biology studies in legumes. This work assesses the extent of the ID variation and consistency at different plant growth stages through selfing generations in seven runner bean populations. Field-collected populations after previous isolated multiplication were hand-pollinated in an isolated greenhouse during five generations to produce progeny. Generations were compared for inbreeding effects (δ) on seed germination, survival to flower, and seed weight and yield. The outcrossing rates of the founder populations and the genetic variation and Wright’s ID at the population and generation level were estimated by using 35 polymorphic microsatellite loci. Neutral microsatellite loci were analyzed through generations and populations using different outlier tests to identify loci directly associated with adaptation to inbreeding. Our study revealed patterns of genetic diversity (H e  = 0.36) and outcrossing rates (ranged from 24 to 44 %) that are consistent with a mixed-mating system. Selfing-pollination procedure significantly affected germination and survival rates, yield, and to a lesser extent seed weight. Three loci had significant hits to genes related to embryonic development when performing BLAST searches to Phytozome database. Results showed a general inconsistency in δ across plant growth stages and populations, suggesting that different deleterious loci are acting at different stages. Inbreeding tended to purge individuals of deleterious recessive alleles to reduce ID. Variation among individuals within populations may lead to the development of inbreeding lineages with lower levels of ID. Several lines that have been self-pollinated for many generations became homozygous at almost all gene loci and produced a uniform population of true breeding progeny and acceptable performance.


Inbreeding depression Mixed-mating system Phaseolus coccineus Microsatellites 



Support was provided by Spanish Government (AGL2008-02091 and AGL2011-25562), EU-FEDER, JAE-Doc contract from National Spanish Research Council (CSIC) to A. M. González. The authors thank the Diputación Provincial de Pontevedra (Spain) for farm facilities.

Supplementary material

10681_2014_1177_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 31 kb)


  1. Allard RW, Jain SK, Workman PL (1968) The genetics of inbreeding populations. Adv Genet 14:55–131CrossRefGoogle Scholar
  2. Alvarez MT, de Miera LES, de la Vega MP (1998) Genetic variation in common and runner bean of the Northern Meseta in Spain. Genet Resour Crop Evol 45:243–251CrossRefGoogle Scholar
  3. Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323CrossRefGoogle Scholar
  4. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond Ser B 263:1619–1626CrossRefGoogle Scholar
  5. Bede EN (2007) Effect of quenching on cook ability of some food legumes. Food Control 18:1161–1164CrossRefGoogle Scholar
  6. Blackwall FLC (1971) Pod-seeding and yield in the runner bean (Phaseolus coccineus L.). Bull Natl Inst Agric Bot 12:45–56Google Scholar
  7. Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374PubMedCrossRefGoogle Scholar
  8. Blair MW, Iriarte G, Beebe S (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean wild common bean (Phaseolus vulgaris L.) cross. Theor Appl Genet 112:1149–1163PubMedCrossRefGoogle Scholar
  9. Brown AHD, Allard RW (1970) Estimation of mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics 66:133–145PubMedCentralPubMedGoogle Scholar
  10. Bürglin TR (2008) The hedgehog protein family. Genome Biol 9:241PubMedCentralPubMedCrossRefGoogle Scholar
  11. Buso GSC, Amaral ZPS, Brondani RPV, Ferreira ME (2006) Microsatellite markers for the common bean—Phaseolus vulgaris. Mol Ecol Notes 6:252–254CrossRefGoogle Scholar
  12. Byers DL, Waller DM (1999) Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30:479–513CrossRefGoogle Scholar
  13. Carr DE, Dudash MR (1997) The effects of five generations of enforced selfing on potential male and female function in Mimulus guttatus. Evolution 51:1795–1805Google Scholar
  14. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268CrossRefGoogle Scholar
  15. Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340PubMedCrossRefGoogle Scholar
  16. Checa OE, Blair MW (2008) Mapping QTL climbing ability and component traits in common bean (Phaseolus vulgaris L.). Mol Breed 22:201–215CrossRefGoogle Scholar
  17. Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep 17:53–57CrossRefGoogle Scholar
  18. Coello G, Escalante AM (1989) Estructura genética y estimación de los parámetros del sistema de apareamiento en poblaciones silvestres y cultivadas de Phaseolus coccineus. B.Sc. Thesis, Universidad Nacional Autónoma de México. D.F., MéxicoGoogle Scholar
  19. Cornish MA (1990a) Selection during a selfing programme. I. The effects of a single round of selection. Heredity 65:201–211PubMedCrossRefGoogle Scholar
  20. Cornish MA (1990b) Selection during a selfing programme. II. The effects of two or more rounds of selection. Heredity 65:213–220PubMedCrossRefGoogle Scholar
  21. Crow JF (1986) Basic concepts in population, quantitative, and evolutionary genetics. W. H. Freeman, New YorkGoogle Scholar
  22. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New YorkGoogle Scholar
  23. Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11PubMedCentralPubMedCrossRefGoogle Scholar
  24. Daehler CC (1999) Inbreeding depression in smooth cordgrass Spartina alterniflora (Poaceae) invading San Francisco Bay. Am J Bot 86:131–139PubMedCrossRefGoogle Scholar
  25. Delgado Salinas A (1988) Variation, taxonomy, domestication and germplasm potentialities in Phaseolus coccineus. In: Gepts P (ed) Genetic resources of Phaseolus beans, 2nd edn. Kluwer Academic, Boston, pp 441–463CrossRefGoogle Scholar
  26. Dudash MR, Carr DE, Fenster CB (1997) Five generations of enforced selfing and outcrossing in Mimulus guttatus: ID variation at the population and family level. Evolution 51:54–65CrossRefGoogle Scholar
  27. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic of Morocco. Theor Appl Genet 92:832–839PubMedCrossRefGoogle Scholar
  28. Escalante AM, Coello G, Eguiarte LE, Pinero D (1994) Genetic structure and mating systems in wild and cultivated populations of Phaseolus coccineus and P. vulgaris (Fabaceae). Am J Bot 81:1096–1103CrossRefGoogle Scholar
  29. Fisher RA (1941) Average excess and average effect of a gene substitution. Ann Eugen 11:53–63CrossRefGoogle Scholar
  30. Fox CW, Scheibly KL, Reed DH (2008) Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution 62:2236–2249PubMedCrossRefGoogle Scholar
  31. Frusciante L, Monti LM (1980) Direct and indirect effects of insect pollination on the yield of the field bean (Vicia faba L.). Pflanzenzüchtg 84:323–328Google Scholar
  32. Fryxell PA (1957) Mode of reproduction in higher plants. Bot Rev 23:135–233CrossRefGoogle Scholar
  33. Gao H, Williamson S, Bustamante CD (2007) An MCMC approach for joint inference of population structure and inbreeding rates from multi-locus genotype data. Genetics 176(3):1635–1651PubMedCentralPubMedCrossRefGoogle Scholar
  34. Gepts P (1981) Hibridaciones interespecíficas para el mejoramiento de Phaseolus vulgaris. Internal seminar, SE-10–81, Centro Internacional de Agricultura Tropical, Cali, ColombiaGoogle Scholar
  35. Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44Google Scholar
  36. Gillaspie AG, Hopkins MS, Dean RE (2005) Determining genetic diversity between lines of Vigna unguiculata subspecies by AFLP and SSR markers. Genet Res Crop Evol 52:245–247CrossRefGoogle Scholar
  37. Gilmore B, Myers JR (2000) Examining the Phaseolus coccineus collection for white mold resistance. HortScience 35:399Google Scholar
  38. Gilmore B, Myers JR (2004) A preliminary molecular marker map for Phaseolus coccineus. Annu Rep Bean Improv Coop 47:87–88Google Scholar
  39. Gilmore B, Myers JR, Kean D (2002) Completion of testing of Phaseolus coccineus plant introductions (PIs) for white mold, Sclerotinia sclerotiorum, resistance. Annu Rept Bean Improv Coop 45:64–65Google Scholar
  40. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186. doi: 10.1093/nar/gkr944 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Syst 36:47–79CrossRefGoogle Scholar
  42. Hanai LR, Campos T, Camargo LEA, Benchimol LL, Souza AP, Melotto M, Carbonell AM, Chioratto AF, Consoli L, Formighieri EF, Bohrer MV, Tsai SM, Vieira MLC (2007) Development, characterization, and comparative analysis of polymorphism at common bean SSR loci isolated from genic and genomic source. Genome 50:266–277PubMedCrossRefGoogle Scholar
  43. Haq N, Smartt J (1978) Interspecific hybridization in Phaseolus and the production of inbred lines. Annu Rep Bean Improv Coop 21:62–63Google Scholar
  44. Hauser BA, He JQ, Park SO, Gasser CS (2000) TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 127(10):2219–2226PubMedGoogle Scholar
  45. Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162CrossRefGoogle Scholar
  46. Holsinger KE (2000) Reproductive systems and evolution in vascular plants. Proc Natl Acad Sci USA 97:7037–7042PubMedCentralPubMedCrossRefGoogle Scholar
  47. Husband B, Schemske D (1996) Evolution of the magnitude and timing of in plants. Evolution 50:54–70CrossRefGoogle Scholar
  48. Ibarra-Perez FJ, Ehdaie B, Waines JG (1997) Estimation of outcrossing rate in common bean. Crop Sci 37:60–65CrossRefGoogle Scholar
  49. Kelly JE (2005) Family level inbreeding depression and the evolution of plant mating systems. New Phytol 165:55–62PubMedCrossRefGoogle Scholar
  50. Kittelson PM, Maronet JL (2000) Outcrossing rate and inbreeding depression in the perennial yellow bush lupine, Lupinus arboreus (Fabaceae). Am J Bot 87(5):652–660PubMedCrossRefGoogle Scholar
  51. Koelewijn HP (1998) Effects of different levels of inbreeding on progeny fitness in Plantago coronopus. Evolution 52:692–702CrossRefGoogle Scholar
  52. Kraic J, Gregová E, Jomová K, Hudcovicová M (2002) Microsatellite markers discriminating accessions within collections of plant genetic resources. Cell Mol Biol Lett 7:745–751PubMedGoogle Scholar
  53. Link W (1990) Autofertility and rate of cross-fertilization: crucial characters for breeding synthetic varieties in faba beans (Vicia faba L.). Theor Appl Genet 79:713–717PubMedCrossRefGoogle Scholar
  54. Liu J, Muse SV (2005) Power Marker: integrated analysis environment for genetic marker data. Bioinformatics 21(9):2128–2129PubMedCrossRefGoogle Scholar
  55. Liu P, Zhu J, Lu Y (2004) Marker-assisted selection in segregating generations of self-fertilizing crops. Theor Appl Genet 109:370–376PubMedGoogle Scholar
  56. Meinke DW (1991) Perspectives on genetic analysis of plant embryogenesis. Plant Cell 3:857–866PubMedCentralPubMedCrossRefGoogle Scholar
  57. Meyer S, Pospisil H, Scholten S (2007) Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive, dominant and overdominant pattern. Plant Mol Biol 63:381–391PubMedCrossRefGoogle Scholar
  58. Morgan MT, Wilson WG (2005) Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution 59:1143–1148PubMedCrossRefGoogle Scholar
  59. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCentralPubMedCrossRefGoogle Scholar
  60. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  61. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163PubMedCentralPubMedGoogle Scholar
  62. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  63. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  64. Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222CrossRefGoogle Scholar
  65. Pray LA, Goodnight CJ (1995) Genetic variation in inbreeding depression on the red flour beetle Tribolium castaneum. Evolution 49:176–188CrossRefGoogle Scholar
  66. Radhika P, Gowda SJM, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (Cicer arietinum L.) using two recombinant inbred line populations. Theor Appl Genet 115:115–209CrossRefGoogle Scholar
  67. Real D, Rizza MD, Quesenberry KH, Echenique M (2004) Reproductive and molecular evidence for allogamy in Lotononis bainesii baker. Crop Sci 44:394–400Google Scholar
  68. Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170CrossRefGoogle Scholar
  69. Ritland K (1984) The effective proportion of self-fertilization with consanguineous matings in inbreed populations. Genetics 106:139–152PubMedCentralPubMedGoogle Scholar
  70. Ritland K (1996) Estimators for pairwise relatedness and inbreeding coefficients. Genet Res 67:175–186CrossRefGoogle Scholar
  71. Rodríguez M, Rau D, Angioi SA, Bellucci E, Bitocchi E, Nanni L, Knüpffer H, Negri V, Papa R, Attene R (2013) European Phaseolus coccineus L. landraces: population structure and adaptation, as revealed by cpSSRs and phenotypic analyses. PLoS One 8(2):e57337. doi: 10.1371/journal.pone.0057337 PubMedCentralPubMedCrossRefGoogle Scholar
  72. Rodríguez-Suárez C, Méndez-Vigo B, Pañeda A, Ferreira JJ, Giraldez R (2007) A genetic linkage map of Phaseolus vulgaris L. and localization of genes for specific resistance to six races of anthracnose (Colletotrichum lindemuthianum). Theor Appl Genet 114:713–722PubMedCrossRefGoogle Scholar
  73. Sandoval-Castellanos E (2010) Testing temporal changes in allele frequencies: a simulation approach. Genet Res 92(4):309–320CrossRefGoogle Scholar
  74. Santalla M, Monteagudo AB, González AM, De Ron AM (2004) Agronomical and quality traits of runner bean germplasm and implications for breeding. Euphytica 135:205–215CrossRefGoogle Scholar
  75. Santalla M, Ron AM, De La Fuente M (2010) Integration of genome and phenotypic scanning gives evidence of genetic structure in Mesoamerican common bean (Phaseolus vulgaris L.) landraces from the southwest of Europe. Theor Appl Genet 120:1635–1651PubMedCrossRefGoogle Scholar
  76. Schoen DJ, Brown AHD (1991) Whole-flower and part-flower self-pollination in Glycine clandestina and G. argyrea and the evolution of autogamy. Evolution 45:1651–1664CrossRefGoogle Scholar
  77. Schultz ST, Willis JH (1995) Individual variation in inbreeding depression: the roles of inbreeding history and mutation. Genetics 141:1209–1223PubMedCentralPubMedGoogle Scholar
  78. Schwartz HF, Otto K, Teran H, Lema M, Singh SP (2006) Inheritance of white mold resistance in Phaseolus vulgaris × P. coccineus crosses. Plant Dis 90:1167–1170CrossRefGoogle Scholar
  79. Seavey SR, Carter SK (1994) Self-sterility in Epilobium obcordatum (Onagraceae). Am J Bot 81:331–338CrossRefGoogle Scholar
  80. Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and P. coccineus L. landraces in Central Italy. Plant Breed 124(5):464–472CrossRefGoogle Scholar
  81. Song JY, Leung T, Ehler LK, Wang C, Liu Z (2000) Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development 127:2207–2217PubMedGoogle Scholar
  82. Sorensen FC (2001) Effect of population outcrossing rate on inbreeding depression in Pinus contorta var. murrayana seedlings. Scand J For Res 16:391–403CrossRefGoogle Scholar
  83. Spataro G, Tiranti B, Arcaleni P, Bellucci E, Attene G, Papa R, Spagnoletti Zeuli P, Negri V (2011) Genetic diversity and structure of a worldwide collection of Phaseolus coccineus L. Theor Appl Genet 122:1281–1291PubMedCrossRefGoogle Scholar
  84. Suso MJ, Pierre J, Moreno MT, Esnault R, Guen JL (2001) Variation in outcrossing levels in faba bean cultivars: role of ecological factors. J Agric Sci 136:399–405CrossRefGoogle Scholar
  85. Uyenoyama M, Waller DM (1991) Coevolution of self-fertilization and inbreeding depression. I. Genetic modification in response to mutation-selection balance at one and two loci. Theor Popul Biol 40:14–46PubMedCrossRefGoogle Scholar
  86. Vargas-Vázquez P, Muruaga JS, Martínez SE, Ruiz R, Hernández S, Mayek N (2011) Morphologic diversity of ayocote beans from Huasteco Karst of Mexico. Rev Mex Biodivers 82:767–775Google Scholar
  87. Vargas-Vázquez P, Muruaga JS, Mayek N, Pérez A, Ramírez SE (2013) Characterization of the runner bean (Phaseolus coccineus L.) of theTrans-Mexican Neovolcanic Belt and Sierra Madre Oriental. Rev Mex Cienc Agríc 5(2):191–200Google Scholar
  88. Waples R (1989) Temporal variation in allele frequencies: testing the right hypothesis. Evolution 43(6):1236–1251CrossRefGoogle Scholar
  89. Wilkinson RE (1983) Incorporation of Phaseolus coccineus germplasm may facilitate production of high yielding P. vulgaris lines. Annu Rep Bean Improv Coop 26:28–29Google Scholar
  90. Xiong LZ, Liu KD, Dai XK, Xu CG, Zhang Q (1999) Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet 98:243–251CrossRefGoogle Scholar
  91. Yu KF, Park SJ, Poysa V (1999) Abundance and variation of microsatellite DNA sequences in beans (Phaseolus and Vigna). Genome 42:27–34CrossRefGoogle Scholar
  92. Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ana M. González
    • 1
  • Antonio M. De Ron
    • 1
  • María Lores
    • 1
  • Marta Santalla
    • 1
  1. 1.Grupo de Biología de Agrosistemas, Departamento de Recursos FitogenéticosMisión Biológica de Galicia-CSICPontevedraSpain

Personalised recommendations