Advertisement

Euphytica

, Volume 200, Issue 2, pp 207–220 | Cite as

Development and application of PCR markers specific to the 1Ns chromosome of Psathyrostachys huashanica Keng with leaf rust resistance

  • Wanli Du
  • Jing Wang
  • Yuhui Pang
  • Jun Wu
  • Jinxin Zhao
  • Shuhui Liu
  • Qunhui Yang
  • Xinhong Chen
Article

Abstract

Wheat–Psathyrostachys huashanica Keng disomic addition line 12-3 was developed and characterized using genomic in situ hybridization (GISH), expressed sequence tag–sequence tagged site (EST–STS), and sequence characterized amplified region (SCAR) markers. Mitotic and meiotic GISH analyses indicated that it contained 42 wheat chromosomes and a pair of P. huashanica chromosomes. Eight EST–STS multiple-loci markers located on the homoeologous group 1 chromosomes of wheat amplified polymorphic bands in the 1Ns disomic addition line 12-3, which were unique to P. huashanica. These markers suggested that the introduced Ns chromosomes belonged to homoeologous group 1. Furthermore, diagnostic fragments of random amplified polymorphic DNA marker OPAG10986 and simple sequence repeat marker Xgwm601 135 were cloned, sequenced, and converted into SCAR markers, i.e., RHS153 and SHS10, respectively, which were validated using a range of distinct plant species and a complete set of wheat–P. huashanica disomic addition lines (1Ns–7Ns, 2n = 44 = 22 II). The results demonstrated that the SCAR markers targeted the Ns genome of P. huashanica and they were linked to the 1Ns chromosome. In addition, 12-3 was evaluated to test its leaf rust resistance in the adult stages and its agronomic traits. These newly developed EST–STS and SCAR markers will be powerful tools for wheat breeders who want to screen for genotypes containing the 1Ns chromosome, with low costs and high throughput.

Keywords

1Ns disomic addition line Leaf rust Marker-assisted selection Molecular marker Psathyrostachys huashanica Triticum aestivum 

Abbreviations

GISH

Genomic in situ hybridization

HMW-GS

High molecular weight glutenin subunit

LMW-GS

Low molecular weight glutenin subunit

SDS-PAGE

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

A-PAGE

Acid polyacrylamide gel electrophoresis

EST–STS

Expressed sequence tag–sequence tagged site

RAPD

Random amplified polymorphic DNA

SSR

Simple sequence repeat

SCAR

Sequence characterized amplified region

AFLP

Amplified fragment length polymorphism

ISSR

Inter simple sequence repeat

Notes

Acknowledgments

Much appreciated financial support was provided by the Ministry of Agriculture “948” project of the People’s Republic of China (No. 2013-Z28), the Shaanxi Natural Science Foundation (No. 2012JM3001 and No. 2013JZ007), and the Tang Zhong-Ying Breeding Funding Project of the Northwest A&F University. The authors would like to thank Dr Duncan E. Jackson for useful advice and English language editing of the manuscript.

Supplementary material

10681_2014_1145_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 28 kb)

References

  1. Alkhimova AG, Heslop-Harrison JS, Shchapova AI, Vershinin AV (1999) Rye chromosome variability in wheat–rye addition and substitution lines. Chromosome Res 7:205–212PubMedCrossRefGoogle Scholar
  2. Chen SY, Zhang AJ, Fu J (1991) The hybridization between Triticum aestivum and Psathyrotachys huashanica. Acta Genet Sin 18:508–512Google Scholar
  3. Chen SY, Hou WS, Zhang AJ, Fu J, Yang QH (1996) Breeding and cytogenetic study of Triticum aestivumPsathyrostachys huashanica alien addition lines. Acta Genet Sin 23:447–452Google Scholar
  4. Chinese National Forest Bureau and Agriculture Ministry (1999) The list of Chinese urgently protected wild plants (The first group). Plant J. Science Press, BeijingGoogle Scholar
  5. Chu CG, Friesen TL, Xu SS, Faris JD, Kolmer JA (2009) Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theor Appl Genet 119:263–269PubMedCrossRefGoogle Scholar
  6. Cota-Sánchez JH, Remarchuk K, Ubayasena K (2006) Ready-to-use DNA extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Mol Biol Rep 24:161–167CrossRefGoogle Scholar
  7. Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, Yang QH, Wu J (2013a) Molecular cytogenetic identification of a wheat–Psathyrostachys huashanica Keng 5Ns disomic addition line with stripe rust resistance. Mol Breed 31:879–888CrossRefGoogle Scholar
  8. Du WL, Wang J, Pang YH, Li YL, Chen XH, Zhao JX, Yang QH, Wu J (2013b) Isolation and characterization of a Psathyrostachys huashanica Keng 6Ns chromosome addition in common wheat. PLoS One 8:e53921PubMedCrossRefPubMedCentralGoogle Scholar
  9. Du WL, Wang J, Wang LM, Pang YH, Wu J, Zhao JX, Yang QH, Chen XH (2013c) A novel SCAR marker for detecting Psathyrostachys huashanica Keng chromatin introduced in wheat. Genet Mol Res 12:4797–4806PubMedCrossRefGoogle Scholar
  10. Du WL, Wang J, Wang LM, Zhang J, Chen XH, Zhao JX, Yang QH, Wu J (2013d) Development and characterization of a Psathyrostachys huashanica Keng 7Ns chromosome addition line with leaf rust resistance. PLoS One 8:e70879PubMedCrossRefPubMedCentralGoogle Scholar
  11. Du WL, Wang J, Lu M, Sun SG, Chen XH, Zhao JX, Yang QH, Wu J (2014a) Characterization of a wheat–Psathyrostachys huashanica Keng 4Ns disomic addition line for enhanced tiller numbers and stripe rust resistance. Planta 239:97–105PubMedCrossRefGoogle Scholar
  12. Du WL, Wang J, Pang YH, Wang LM, Wu J, Zhao JX, Yang QH, Chen XH (2014b) Isolation and characterization of a wheat–Psathyrostachys huashanica ‘Keng’ 3Ns disomic addition line with resistance to stripe rust. Genome 57:37–44CrossRefGoogle Scholar
  13. Du WL, Wang J, Wang LM, Wu J, Zhao JX, Liu SH, Yang QH, Chen XH (2014c) Molecular characterization of a wheat-Psathyrostachys huashanica Keng 2Ns disomic addition line with resistance to stripe rust. Mol Genet Genomics. doi: 10.1007/s00438-014-0844-2
  14. Fernández-Escobar J, Martin A (1985) Morphology, cytology and fertility of a trigeneric hybrid from Triticale × Tritordeum. Z Pflanzenzuecht 95:311–318Google Scholar
  15. Fu J, Wang MN, Zhao JX, Chen SY, Hou WS, Yang QH (2003) Studies on cytogenetics and utilization of wheat–Psathyrostachys huashanica medium material H8911 with resistance to wheat take-all fungus. Acta Bot Boreal Occident Sin 23:2157–2162Google Scholar
  16. Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan CX, Lagudah ES (2011) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486CrossRefGoogle Scholar
  17. Hiebert CW, Thomas JB, McCallum BD, Somers DJ (2008) Genetic mapping of the wheat leaf rust resistance gene Lr60 (LrW2). Crop Sci 48:1020–1026CrossRefGoogle Scholar
  18. Hirata M, Cai HW, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet 113:270–279PubMedCrossRefGoogle Scholar
  19. Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664PubMedPubMedCentralGoogle Scholar
  20. Huerta-Espino J, Singh RP, Germán S, McCallum BD, Park RF, Chen WQ, Bhardwaj SC, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160CrossRefGoogle Scholar
  21. Jing JX, Fu J, Yuan HX, Wang MN, Shang HS, Li ZQ (1999) A preliminary study on heredity of the resistance to stripe rust in three wild relatives of wheat. Acta Phytopathol Sin 29:147–150Google Scholar
  22. Kang HY, Zhang HQ, Fan X, Zhou YH (2008) Morphological and cytogenetic studies on the hybrid between bread wheat and Psathyrostachys huashanica Keng ex Kuo. Euphytica 162:441–448CrossRefGoogle Scholar
  23. Kang HY, Chen Q, Wang Y, Zhong MY, Zhang HQ, Zhou YH (2010) Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica. Genet Resour Crop Evol 57:111–118CrossRefGoogle Scholar
  24. Kang HY, Wang Y, Fedak G, Cao WG, Zhang HQ, Fan X, Sha LN, Xu LL, Zheng YL, Zhou YH (2011) Introgression of chromosome 3Ns from Psathyrostachys huashanica into wheat specifying resistance to stripe rust. PLoS One 6:e21802PubMedCrossRefPubMedCentralGoogle Scholar
  25. Kang HY, Zeng J, Xie Q, Tao S, Zhong MY, Zhang HQ, Fan X, Sha L, Xu LL, Zhou HY (2012) Molecular cytogenetic characterization and stripe rust response of a trigeneric hybrid involving Triticum, Psathyrostachys, and Thinopyrum. Genome 55:383–390PubMedCrossRefGoogle Scholar
  26. Kikuchi S, Taketa S, Ichii M, Kawasaki S (2003) Efficient fine mapping of the naked caryopsis gene (nud) by HEGS (high efficiency genome scanning)/AFLP in barley. Theor Appl Genet 108:73–78PubMedCrossRefGoogle Scholar
  27. Koveza OV, Gostimsky SA (2005) Development and study of SCAR markers in pea (Pisum sativum L.). Russ J Genet 41:1254–1261CrossRefGoogle Scholar
  28. Larson SR, Kishii M, Tsujimoto H, Qi LL, Chen PD, Lazo GR, Jensen KB, Wang RRC (2012) Leymus EST linkage maps identify 4NsL-5NsL reciprocal translocation, wheat–Leymus chromosome introgressions, and functionally important gene loci. Theor Appl Genet 124:189–206PubMedCrossRefGoogle Scholar
  29. Li T, Bai GH (2009) Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theor Appl Genet 119:13–21PubMedCrossRefGoogle Scholar
  30. Liu WX, Liu WH, Wu J, Gao AN, Li LH (2010) Analysis of genetic diversity in natural populations of Psathyrostachys huashanica Keng using microsatellite (SSR) markers. Agric Sci China 9:463–471CrossRefGoogle Scholar
  31. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, East Melbourne, pp 29–82CrossRefGoogle Scholar
  32. McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R (2010) Catalogue of gene symbols for wheat: 2009 suppl. http://www.grsnigacjp/wheat/komugi/genes/macgene/supplement2010.pdf
  33. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697PubMedCrossRefGoogle Scholar
  34. Quian W, Ge S, Hong DY (2001) Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor Appl Genet 102:440–449CrossRefGoogle Scholar
  35. Rafiqul Islam AKM, Shepherd KW (2000) Isolation of a fertile wheat–barley addition line carrying the entire barley chromosome 1H. Euphytica 111:145–149CrossRefGoogle Scholar
  36. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedPubMedCentralGoogle Scholar
  37. Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting to leaf rust in wheat. Phytopathology 88:890–894PubMedCrossRefGoogle Scholar
  38. Spielmeyer W, Huang L, Bariana H, Laroche A, Gill BS, Lagudah ES (2000) NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theor Appl Genet 101:1139–1144CrossRefGoogle Scholar
  39. Sun XC, Bai GH, Carver BF, Bowden R (2010) Molecular mapping of wheat leaf rust resistance gene Lr42. Crop Sci 50:59–66CrossRefGoogle Scholar
  40. Tuna M, Gill KS, Vogel P (2001) Karyotype and C-banding patterns of mitotic chromosome in diploid Bromegrass (Bromus riparius Rehm). Crop Sci 41:831–834CrossRefGoogle Scholar
  41. Wang L, Guo J, Zhao GF (2006) Genetic diversity of the endangered and endemic species Psathyrostachys huashanica natural populations using simple sequence repeats (SSRs) markers. Biochem Syst Ecol 34:310–318CrossRefGoogle Scholar
  42. Wang CM, Li LH, Zhang XT, Gao Q, Wang RF, An DG (2009) Development and application of EST–STS markers specific to chromosome 1RS of Secale cereal. Cereal Res Commun 37:13–21CrossRefGoogle Scholar
  43. Wang Y, Xie Q, Yu KY, Poysa V, Lin LJ, Kang HY, Fan X, Sha L, Zhang HQ, Zhou YH (2011) Development and characterization of wheat–Psathyrostachys huashanica partial amphiploids for resistance to stripe rust. Biotechnol Lett 33:1233–1238PubMedCrossRefGoogle Scholar
  44. Wang J, Lu M, Du WL, Zhang J, Dong XY, Wu J, Zhao JX, Yang QH, Chen XH (2013) A novel PCR-based marker for identifying Ns chromosomes in wheat–Psathyrostachys huashanica Keng derivative lines. Span J Agric Res 11:1094–1100CrossRefGoogle Scholar
  45. Wu M, Zhang JP, Wang JC, Yang XM, Gao AN, Zhang XK, Liu WH, Li LH (2010) Cloning and characterization of repetitive sequences and development of SCAR markers specific for the P genome of Agropyron cristatum. Euphytica 172:363–372CrossRefGoogle Scholar
  46. Xu JH, Linning R, Fellers J, Dickinson M, Zhu WH, Antonov I, Joly DL, Donaldson ME, Eilam T, Anikster Y, Banks T, Munro S, Mayo M, Wynhoven B, Ali J, Moore R, McCallum B, Borodovsky M, Saville B, Bakkeren G (2011) Gene discovery in EST sequences from the wheat leaf rust fungus Puccinia triticina sexual spores, asexual spores and haustoria, compared to other rust and corn smut fungi. BMC Genomics 12:1471–2164Google Scholar
  47. Xu GH, Su WY, Shu YJ, Cong WW, Wu L, Guo CH (2012) RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E (Poaceae) genome. Genet Mol Res 11:1741–1751PubMedCrossRefGoogle Scholar
  48. Zhao JX, Ji WQ, Wu J, Chen XH, Cheng XN, Wang JW, Pang YH, Liu SH, Yang QH (2010a) Development and identification of a wheat–Psathyrostachys huashanica addition line carrying HMW-GS, LMW-GS and gliadin genes. Genet Resour Crop Evol 57:387–394CrossRefGoogle Scholar
  49. Zhao WC, Qi LL, Gao X, Zhang GS, Dong J, Chen QJ, Friebe B, Gill BS (2010b) Development and characterization of two new Triticum aestivumDasypyrum villosum Robertsonian translocation lines T1DS.1V#3L and T1DL.1V#3S and their effect on grain quality. Euphytica 175:343–350CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Wanli Du
    • 1
  • Jing Wang
    • 1
  • Yuhui Pang
    • 1
  • Jun Wu
    • 1
  • Jinxin Zhao
    • 1
  • Shuhui Liu
    • 1
  • Qunhui Yang
    • 1
  • Xinhong Chen
    • 1
  1. 1.Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of AgronomyNorthwest A&F UniversityYanglingChina

Personalised recommendations