, Volume 196, Issue 2, pp 299–311 | Cite as

Improving in vitro induction of autopolyploidy in grapevine seedless cultivars

  • Iraci Sinski
  • Daniela Dal Bosco
  • Neiva Izabel Pierozzi
  • João Dimas Garcia Maia
  • Patrícia Silva Ritschel
  • Vera Quecini


The efficiency of in vitro polyploidization depends on several variables associated to the plant, the antimicrotubule agent and the interactions between them. In the present work, we have used response-surface methodology to determine the best operating conditions for plant recovery in polyploidization assays for shoot apices and somatic embryos of two seedless grape cultivars, employing colchicine and oryzalin. Explant type, tubulin-interfering compound and concentration were the critical factors determining plant recovery. Linear reduction in viable plant regeneration via organogenesis and somatic embryogenesis was obtained by increasing oryzalin concentrations and treatment time, whereas the effects of colchicine were better described by a quadratic design for both explants types. The conditions promoting higher rates of plant recovery were used in chromosome doubling experiments with oryzalin and colchicine for shoot apices and somatic embryos of ‘Crimson seedless’ and ‘BRS Clara’. The established protocols allowed the recovery of non-chimerical autotetraploid plants at rates higher than 30 % for both cultivars. Stomata size parameters statistically correlate to the ploidy level of the regenerants and were effective for preliminary polyploidy screening. Autotetraploid lines of seedless grapes were incorporated into the Vitis germplasm bank for further agronomical evaluations. To our knowledge, this is the first report of in vitro oryzalin induced polyploidization of grapevine and of the use of mathematical modeling to optimize chromosome doubling in plants.


Colchicine Organogenesis Oryzalin Polyploidy Seedless grape Somatic embryogenesis 

Supplementary material

10681_2013_1034_MOESM1_ESM.tif (1.8 mb)
Supplementary material 1 (TIFF 1881 kb)
10681_2013_1034_MOESM2_ESM.tif (1.3 mb)
Supplementary material 2 (TIFF 1331 kb)
10681_2013_1034_MOESM3_ESM.docx (19 kb)
Supplementary material 3 (DOCX 18 kb)


  1. Alberch P, Gale EA (1983) Size dependence during the development of the amphibian foot. Colchicine-induced digital loss, reduction. J Emb Exp Morphol 76:177–197Google Scholar
  2. Anthony RG, Hussey PJ (1999) Dinitroaniline herbicide resistance and the microtubule cytoskeleton. Trends Plant Sci 4:112–116. doi: 10.1016/S1360-1385(99)01378-3 CrossRefPubMedGoogle Scholar
  3. Arora PK, Jyot G, Singh B, Battu RS, Singh B, Aulakh PS (2009) Persistence of imidacloprid on grape leaves, grape berries and soil. Bull Environ Contam Toxicol 82:239–242. doi: 10.1007/s00128-008-9554-y CrossRefPubMedGoogle Scholar
  4. Aversano R, Caruso I, Aronne G, De Micco V, Scognamiglio N, Carputo D (2013) Stochastic changes affect Solanum wild species following autopolyploidization. J Exp Bot 64:625–635. doi: 10.1093/jxb/ers357 CrossRefPubMedGoogle Scholar
  5. Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. doi: 10.1111/j.1469-8137.2008.02528.x CrossRefPubMedGoogle Scholar
  6. Berenschot AS, Zucchi MI, Tulmann-Neto A, Quecini V (2008) Mutagenesis in Petunia × hybrida Vilm. and isolation of a novel morphological mutant. Braz J Plant Physiol 20:95–103. doi: 10.1590/S1677-04202008000200002 CrossRefGoogle Scholar
  7. Bergamini C, Cardone MF, Anaclerio A, Perniola R, Pichierri A, Genghi R, Alba V, Forleo LR, Caputo AR, Montemurro C, Blanco A, Antonacci D (2013) Validation assay of VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Mol Biotechnol 54:1021–1030. doi: 10.1007/s12033-013-9654-8 CrossRefPubMedGoogle Scholar
  8. Besnard F, Vernoux T, Hamant O (2011) Organogenesis from stem cells in planta: multiple feedback loops integrating molecular and mechanical signals. Cell Mol Life Sci 68:2885–2906. doi: 10.1007/s00018-011-0732-4 CrossRefPubMedGoogle Scholar
  9. Breviario D, Gianì S, Morello L (2013) Multiple tubulins: evolutionary aspects and biological implications. Plant J. doi: 10.1111/tpj.12243 PubMedGoogle Scholar
  10. Cai X, Kang X-Y (2011) In vitro tetraploid induction from leaf explants of Populus pseudo-simonii Kitag. Plant Cell Rep 30:1771–1778. doi: 10.1007/s00299-011-1085-z CrossRefPubMedGoogle Scholar
  11. Camargo UA, Nachtigal JC, Maia JDG, Oliveira PRD, Protas JFS (2003) BRS Clara: nova cultivar de uva de mesa branca sem semente. Bento Gonçalves: Embrapa-CNPUV (Embrapa Uva e Vinho. Comunicado Técnico, 46), in Portuguese. Accessed 10 May 2013
  12. Caperta AD, Delgado M, Ressurreição F, Meister A, Jones RN, Viegas W, Houben A (2006) Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells. Protoplasma 227:147–153. doi: 10.1159/000151319 CrossRefPubMedGoogle Scholar
  13. Carvalho JFR, Carvalho CR, Otoni WC (2005) In vitro induction of polyploidy in annatto (Bixa orellana). Plant Cell Tiss Organ Cult 80:69–75. doi: 10.1007/s11240-004-8833-5 CrossRefGoogle Scholar
  14. Chalak L, Legave JM (1996) Oryzalin combined with adventitious regeneration for an efficient chromosomoe doubling of trihaploid kiwifruit. Plant Cell Rep 16:97–100. doi: 10.1007/BF01275459 CrossRefPubMedGoogle Scholar
  15. Chatfield SP, Capron R, Severino A, Penttila PA, Alfred S, Nahal H, Provart NJ (2013) Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. Plant J 73:798–813. doi: 10.1111/tpj.12085 CrossRefPubMedGoogle Scholar
  16. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigor. Trend Plant Sci 15:57–71. doi: 10.1016/j.tplants.2009.12.003 CrossRefGoogle Scholar
  17. Dermen H (1954) Colchiploidy in grapes. J Hered 45:159–172Google Scholar
  18. Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss Organ Cult 104:359–373. doi: 10.1007/s11240-010-9786-5 CrossRefGoogle Scholar
  19. Dokoozlian N, Luvisi D, Moriyama M, Schrader P (1995) Cultural practices improve color, size of ‘Crimson Seedless’. California Agric 49:36–40. doi: 10.3733/ca.v049n02p36 CrossRefGoogle Scholar
  20. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461. doi: 10.1146/annurev.genet.42 CrossRefPubMedGoogle Scholar
  21. DuClercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606. doi: 10.1016/j.tplants.2011.08.004 CrossRefPubMedGoogle Scholar
  22. Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) Transgenic plants from shoot apical meristems of Vitis vinifera L. “Thompson Seedless” via Agrobacterium-mediated transformation. Plant Cell Rep 26:2101–2110. doi: 10.1007/s00299-007-0424-6 CrossRefGoogle Scholar
  23. Franks T, Gang He D, Thomas MR (1998) Regeneration of transgenic shape Vitis vinifera L. sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333. doi: 10.1023/A:1009673619456 CrossRefGoogle Scholar
  24. Galzy R (1964) Technique de thermotherapie des viroses de la vigne. Ann Epiphyt 15:245–256Google Scholar
  25. Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, Gribaudo I (2011) Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. J Exp Bot 62:1089–1101. doi: 10.1093/jxb/erq349 CrossRefPubMedGoogle Scholar
  26. Gray DJ, Fisher LC (1985) In vitro shoot propagation of grape species, hybrids and cultivars. Proc Fla State Hort Soc 98:172–174Google Scholar
  27. Gribaudo I, Gambino G, Vallania R (2004) Somatic embryogenesis from grapevine anthers: identification of the optimal developmental stage for collecting explants. Am J Enol Vitic 55:427–430Google Scholar
  28. Häntzschel KR, Weber G (2010) Blockage of mitosis in maize root tips using colchicine-alternatives. Protoplasma 241:99–104. doi: 10.1007/s00709-009-0103-2 CrossRefPubMedGoogle Scholar
  29. Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, Palmer C, Cerabolini B, Pierce S, Hamzehee B, Asri Y, Jamzad Z, Wilson P, Raven JA, Band SR, Basconcelo S, Bogard A, Carter G, Charles M, Castro-Díez P, Cornelissen JH, Funes G, Jones G, Khoshnevis M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Boustani S, Dehghan M, Guerrero-Campo J, Hynd A, Kowsary E, Kazemi-Saeed F, Siavash B, Villar-Salvador P, Craigie R, Naqinezhad A, Romo-Díez A, de Torres Espuny L, Simmons E (2010) Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Ann Bot 105:573–584. doi: 10.1093/aob/mcq011 CrossRefPubMedGoogle Scholar
  30. Jürgens G, Mayer U, Torres Ruiz RA, Berleth T, Misera S (1991) Genetic analysis of pattern formation in Arabidopsis embryo. Dev Suppl 1:27–38Google Scholar
  31. Kasha KJ (2005) Chromosome doubling and recovery of doubled haploid plants. Haploids in crop improvement II, vol 56. Springer, Berlin, pp 123–152CrossRefGoogle Scholar
  32. Koch EA, Spitzer RH (1982) Autoradiographic studies of protein, polysaccharide synthesis during vitellogenesis in Drosophila. Cell Tiss Res 224:315–333CrossRefGoogle Scholar
  33. Koch EA, Spitzer RH (1983) Multiple effects of colchicine on oogenesis in Drosophila, induced sterility, switch of potential oocyte to nurse-cell developmental pathway. Cell Tiss Res 228:21–32CrossRefGoogle Scholar
  34. Kuliev VM (2011) Induced autotetraploid grape mutants. Cytol Genet 45:163–169Google Scholar
  35. Langhans M, Niemes S, Pimpl P, Robinson DG (2009) Oryzalin bodies: in addition to its anti-microtubule properties, the dinitroaniline herbicide oryzalin causes nodulation of the endoplasmic reticulum. Protoplasma 236:73–84. doi: 10.1007/s00709-009-0059-2 CrossRefPubMedGoogle Scholar
  36. Laux T, Mayer KF, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  37. Lenth RV (2009) Response-surface methods in R using rsm. J Stat Soft 32:1–17. doi: Accessed 22 Aug 2013Google Scholar
  38. Liu XZ, Lin H, Mo XY, Long T, Zhang HY (2009) Genetic variation in colchicine-treated regenerated plants of Eucalyptus globulus Labill. J Genet 88:345–348CrossRefPubMedGoogle Scholar
  39. López-Miranda S, Hernández-Sánchez P, Serrano-Martínez A, Hellín P, Fenoll J, Núñez-Delicado E (2011) Effect of ripening on protein content and enzymatic activity of crimson seedless table grape. Food Chem 127:481–486. doi: 10.1016/j.foodchem.2011.01.027 CrossRefPubMedGoogle Scholar
  40. Luckett D (1989) Colchicine mutagenesis is associated with substantial heritable variation in cotton. Euphytica 42:177–182. doi: 10.1007/BF00042630 CrossRefGoogle Scholar
  41. Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B (2009) Differential regulation of SERK, LEC1-like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiol Biochem 47:743–752. doi: 10.1016/j.plaphy.2009.03.016 CrossRefPubMedGoogle Scholar
  42. Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356. doi: 10.1007/s00299-007-0438-0 CrossRefPubMedGoogle Scholar
  43. Martinelli L, Gribaudo I (2009) Strategies for effective somatic embryogenesis in grapevine: an appraisal. In: Angelakis-Roubelakis KA (ed) Grapevine molecular physiology & biotechnology. Springer, Dordercht, pp 461–493. doi: 10.1007/978-90-481-2305-6_17 CrossRefGoogle Scholar
  44. Motosugi H, Okudo K, Kataoka D, Naruo T (2002) Comparison of growth characteristics between diploid and colchicine-induced tetraploid grapevine rootstocks. J Jpn Soc Hort Sci 71:335–341CrossRefGoogle Scholar
  45. Nitsch JP, Pratt C, Nitsch C, Shaulis NJ (1960) Substances in concord and concord seedless grapes in relation to berry development. Am J Bot 47:566–576CrossRefGoogle Scholar
  46. Notsuka K, Tsuru T, Shiraishi M (2000) Induced polyploid grapes via in vitro chromosome doubling. J Jpn Soc Hortic Sci 69:543–551CrossRefGoogle Scholar
  47. Olmo HP (1952) Breeding tetraploid grapes. Proc Am Soc Hort Sci 59:285–290Google Scholar
  48. Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17. doi: 10.1111/j.1469-8137.2009.03142.x CrossRefPubMedGoogle Scholar
  49. Parrotta L, Cai G, Cresti M (2010) Changes in the accumulation of alpha- and beta-tubulin during bud development in Vitis vinifera L. Planta 231:277–291. doi: 10.1007/s00425-009-1053-9 CrossRefPubMedGoogle Scholar
  50. Poloz Y, O’Day DH (2012) Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling. Differentiation 83:185–199. doi: 10.1016/j.diff.2011.12.006 CrossRefPubMedGoogle Scholar
  51. Predieri S (2001) Mutation induced and tissue culture in improving fruits. Plant Cell Tiss Org Cult 64:185–210. doi: 10.1023/A:1010623203554 CrossRefGoogle Scholar
  52. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0. Accessed 23 Aug 2013
  53. Ramming DW, Tarailo R, Badr SA (1995) ‘Crimson Seedless’: a new late maturing, red seedless table grape. HortScience 30:1473–1474Google Scholar
  54. Reed BM, Wada S, DeNoma J, Niedz RP (2013) Improving in vitro mineral nutrition for diverse pear germplasm. In Vitro Cell Dev Biol 49:343–355. doi: 10.1007/s11627-013-9504-1 CrossRefGoogle Scholar
  55. Rêgo MM, Rêgo ER, Bruckner CH, Finger FL, Otoni WC (2011) In vitro induction of autotetraploids from diploid yellow passion fruit mediated by colchicine and oryzalin. Plant Cell Tiss Organ Cult 107:451–459. doi: 10.1007/s11240-011-9995-6 CrossRefGoogle Scholar
  56. Sarikani H, Wakana A (2009) Effect of ploidy on parthenocarpy in grape cultivars. Acta Horticult 827:433–438. Accessed 10 May 2013Google Scholar
  57. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefPubMedGoogle Scholar
  58. Sharma D, Awasthi MD (2003) Behaviour of forchlorfenuron residues in grape, soil and water. Chemosphere 50:589–594. doi: 10.1016/S0045-6535(02)00619-7 CrossRefPubMedGoogle Scholar
  59. Shiraishi M, Fujishima H, Chijiwa H (2008) Tetraploid sucrose-accumulating grapevines. Vitis 47:191–192Google Scholar
  60. Shiraishi M, Fujishima H, Chijiwa H (2010) Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica 174:1–13. doi: 10.1007/s10681-009-0084-4 CrossRefGoogle Scholar
  61. Shiraishi M, Fujishima H, Chijiwa H, Muramoto K (2012) Estimates of genotypic and yearly variations on fruit quality and functional traits for tetraploid table grape breeding. Euphytica 185:243–251. doi: 10.1007/s10681-011-0562-3 CrossRefGoogle Scholar
  62. Stout AB (1936) Seedlessness in grapes.Technical Bulletin, N. 238. New York State Agricultural Experiment Station, GenevaGoogle Scholar
  63. Sweetman C, Wong DC, Ford CM, Drew DP (2012) Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression. BMC Genomics 13:691. doi: 10.1186/1471-2164-13-691 CrossRefPubMedCentralPubMedGoogle Scholar
  64. Vainola A (2000) Polyploidization and early screening of Rhododendron hybrids. Euphytica 112:239–244. doi: 10.1023/A:1003994800440 CrossRefGoogle Scholar
  65. Van Tuyl JM, Meijer B, Van Dien MP (1992) The use of oryzalin as an alternative for colchicines in vitro chromosome doubling of Lilium and Nerina. Acta Hortic 325:625–630Google Scholar
  66. Wada S, Niedz RP, DeNoma J, Reed BM (2013) Mesos components (CaCl2, MgSO4, KH2PO4) are critical for improving pear micropropagation. In Vitro Cell Dev Biol Plant 49:356–365. doi: 10.1007/s11627-013-9508-x CrossRefGoogle Scholar
  67. Wakana A, Park SM, Hiramatsu M, Iianada N, Fukudome I, Yasukochi K (2005) Characteristics of seedless berries of tetraploid hybrid grapes (Vitis complex) from reciprocal crosses between diploid ‘Muscat Bailey A’ and tetraploid ‘Red Pearl’. J Fac Agr Kyushu Uni 50:49–59Google Scholar
  68. Xue J, Wang S, You X, Dong J, Han L, Liu F (2011) Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 25:3289–3297. doi: 10.1002/rcm.5225 CrossRefPubMedGoogle Scholar
  69. Yang XM, Cao ZY, An LZ, Wang YM, Fang XW (2006) In vitro tetraploid induction via colchicine treatment from diploid somatic embryos in grapevine (Vitis vinifera L.). Euphytica 152:217–224. doi: 10.1007/s10681-006-9203-7 CrossRefGoogle Scholar
  70. Yu Z, Haage K, Streit VE, Gierl A, Torres-Ruiz RA (2009) A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. Theor App Gen 118:1107–1119. doi: 10.1007/s00122-009-0966-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Iraci Sinski
    • 1
  • Daniela Dal Bosco
    • 1
  • Neiva Izabel Pierozzi
    • 2
  • João Dimas Garcia Maia
    • 3
  • Patrícia Silva Ritschel
    • 1
  • Vera Quecini
    • 1
  1. 1.Embrapa Uva e Vinho (Brazilian Agricultural Research Corporation – Grapevine and Wine Research Center)Bento GonçalvesBrazil
  2. 2.Genetic Resources Center, Instituto Agronômico de CampinasCampinasBrazil
  3. 3.Tropical Viticulture Experimental StationEmbrapa Uva e VinhoJalesBrazil

Personalised recommendations