, Volume 193, Issue 2, pp 265–275 | Cite as

Resistance to a new biotype of the lettuce aphid Nasonovia ribisnigri in Lactuca virosa accession IVT280

  • Cindy J. M. ten Broeke
  • Marcel Dicke
  • Joop J. A. van Loon


Host plant resistance is an effective protection strategy to control aphids in many crops. However, the evolution of insensitive aphid biotypes necessitates the search for new resistance sources. Wild relatives of crop plants can be important sources for resistance genes to be introgressed into new cultivars. Nasonovia ribisnigri (Mosely) (Homoptera: Aphididae) is an important pest of cultivated lettuce, Lactuca sativa. Since 1982, resistance introduced into lettuce cultivars has relied on the Nr-gene, originating from a wild relative, Lactuca virosa. In 2007 first reports appeared that Nr-based resistance had become ineffective against certain populations of N. ribisnigri. The objective of this study was to establish if the original donor of the Nr-gene L. virosa accession, IVT 280, is resistant against recently emerged virulent (Nr:1) N. ribisnigri biotypes. To this end we investigated feeding and penetration behaviour of virulent and avirulent (Nr:0) aphids on the resistant L. virosa, IVT 280, and two susceptible L. virosa accessions, using the electrical penetration graph method. Additionally, aphid performance was analysed in terms of survival, development time and reproduction on these accessions. L. virosa accession IVT 280 was resistant against all populations of N. ribisnigri tested. The ingestion of phloem was strongly reduced on the resistant accession compared to the susceptible L. virosa accessions. Additionally, none of the aphids survived on the resistant accession that, therefore, constitutes a good source of resistance in lettuce against both biotypes of N. ribisnigri.


Lettuce Electrical penetration graph technique Aphid Phloem sap ingestion Lactuca virosa Nasonovia ribisnigri 



Stichting Technologisch Top Instituut Groene Genetica (TTI-GG project 2CFD022RP) and Keygene N.V are acknowledged for financial support.

Supplementary material

10681_2013_941_MOESM1_ESM.doc (131 kb)
Supplementary material 1 (DOC 131 kb)


  1. Alvarez AE, Tjallingii WF, Garzo E, Vleeshouwers V, Dicke M, Vosman B (2006) Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomol Exp Appl 121(2):145–157CrossRefGoogle Scholar
  2. Blackman RL, Eastop VW (2000) Aphids on the World’s Crops: an identification and information guide, 2nd edn. Wiley, ChichesterGoogle Scholar
  3. Bos L, Huijberts N (1990) Screening for resistance to big-vein disease of lettuce (Lactuca sativa). Crop Prot 9(6):446–452CrossRefGoogle Scholar
  4. Cid M, Ávila A, García A, Abad J, Fereres A (2012) New sources of resistance to lettuce aphids in Lactuca spp. Arthropod Plant Interact 6(4):1–15CrossRefGoogle Scholar
  5. Cole RA (1994) Locating a resistance mechanism to the cabbage aphid in two wild Brassicas. Entomol Exp Appl 71(1):23–31CrossRefGoogle Scholar
  6. Crute IR (1992) From breeding to cloning (and back again)—a case-study with lettuce downey mildew. Annu Rev Phytopathol 30:485–506PubMedCrossRefGoogle Scholar
  7. Dieleman FL, Eenink AH (1980) Breeding lettuce (Lactuca sativa) for resistance to the aphid Nasonovia ribisnigri. In: Minks AK, Gruys P (eds) Intergrated control of insect pests in the Netherlands. Centre for Argicultural Publishing and Documentation, Wageningen, pp 183–185Google Scholar
  8. Dogimont C, Bendahmane A, Chovelon V, Boissot N (2010) Host plant resistance to aphids in cultivated crops: genetic and molecular bases, and interactions with aphid populations (Les pucerons : modèles biologiques et ravageurs des cultures). C R Biol 333(6–7):566–573PubMedCrossRefGoogle Scholar
  9. Dreyer DL, Campbell BC (1987) Chemical basis of host-plant resistance to aphids. Plant Cell Environ 10(5):353–361Google Scholar
  10. Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. In: Plant breeding reviews. Wiley, New York pp 179–230Google Scholar
  11. Eenink AH, Groenwold R, Dieleman FL (1982) Resistance of lettuce (Lactuca) to the leaf aphid Nasonovia ribis nigri. 1. Transfer of resistance from L. virosa to L. sativa by interspecific crosses and selection of resistant breeding lines. Euphytica 31(2):291–299CrossRefGoogle Scholar
  12. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156(1–2):1–13CrossRefGoogle Scholar
  13. Jun TH, Rouf Mian MA, Michel AP (2012) Genetic mapping revealed two loci for soybean aphid resistance in PI 567301B. Theor Appl Genet 124(1):13–22PubMedCrossRefGoogle Scholar
  14. Kumar S, Atri C, Sangha M, Banga S (2011) Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica 179(3):461–470CrossRefGoogle Scholar
  15. Lambert P, Pascal T (2011) Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar “Rubira®”. Tree Genet Genome 7(5):1057–1068CrossRefGoogle Scholar
  16. Le Roux V, Campan EDM, Dubois F, Vincent C, Giordanengo P (2007) Screening for resistance against Myzus persicae and Macrosiphum euphorbiae among wild Solanum. Ann Appl Biol 151(1):83–88CrossRefGoogle Scholar
  17. Lombaert E, Carletto J, Piotte C, Fauvergue X, Lecoq H, Vanlerberghe-Masutti F, Lapchin L (2009) Response of the melon aphid, Aphis gossypii, to host-plant resistance: evidence for high adaptive potential despite low genetic variability. Entomol Exp Appl 133(1):46–56CrossRefGoogle Scholar
  18. Maisonneuve B, Chovelon V, Lot H (1991) Inheritance of resistance to beet Western Yellows Virus in Lactuca virosa L. HortScience 26(12):1543–1545Google Scholar
  19. McCreight JD (2008) Potential sources of genetic resistance in Lactuca spp. to the lettuce aphid, Nasonovia ribisnigri (Mosely) (Homoptera: Aphididae). HortScience 43(5):1355–1358Google Scholar
  20. McCreight JD, Liu YB (2012) Resistance to lettuce aphid (Nasonovia ribisnigri) biotype 0 in wild lettuce accessions PI 491093 and PI 274378. HortScience 47(2):179–184Google Scholar
  21. Murugan M, Khan SA, Cardona PS, Orozco GV, Viswanathan P, Reese J, Starkey S, Smith CM (2010) Variation of resistance in barley against biotypes 1 and 2 of the Russian wheat aphid (Hemiptera: Aphididae). J Econ Entomol 103(3):938–948PubMedCrossRefGoogle Scholar
  22. Pompon J, Quiring D, Giordanengo P, Pelletier Y (2010) Role of host-plant selection in resistance of wild Solanum species to Macrosiphum euphorbiae and Myzus persicae. Entomol Exp Appl 137(1):73–85CrossRefGoogle Scholar
  23. Pompon J, Li XQ, Pelletier Y (2011) Resistance level to an aphid potato pest varies between genotypes from the same Solanum accession. J Econ Entomol 104(3):1075–1079PubMedCrossRefGoogle Scholar
  24. Radcliffe EB (1982) Insect pests of potato. Annu Rev Entomol 27:173–204CrossRefGoogle Scholar
  25. Sarria E, Cid M, Garzo E, Fereres A (2009) Excel Workbook for automatic parameter calculation of EPG data. Comput Electron Agric 67(1–2):35–42CrossRefGoogle Scholar
  26. Sauer-Kesper CL, Buser H, Vogler U (2011) Bedeutung und Verbreitung des neuen Biotyps-Nr:1 der Grünen Salatlaus in der Deutschschweiz. Pflanzenbau-Agrarforschung Schweiz 10:462–469Google Scholar
  27. Smith CM (1989) Plant resistance to insects. A fundamental approach. Wiley, ChichesterGoogle Scholar
  28. Stufkens MAW, Teulon DAJ (2003) Distribution, host range and flight pattern of the lettuce aphid in New Zealand. New Zeal Plant Prot 56:27–32Google Scholar
  29. Tagu D, Klingler JP, Moya A, Simon JC (2008) Early progress in aphid genomics and consequences for plant-aphid interactions studies. Mol Plant Microbe Interact 21(6):701–708PubMedCrossRefGoogle Scholar
  30. ten Broeke CJM, Dicke M, Van Loon JJA (2013a) Feeding behaviour and performance of different populations of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible lettuce. Entomol Exp Appl. In pressGoogle Scholar
  31. ten Broeke CJM, Dicke M, Van Loon JJA (2013b) Performance and feeding behaviour of two biotypes of the black currant-lettuce aphid, Nasonovia ribisnigri, on resistant and susceptible Lactuca sativa near-isogenic lines. Bull Entomol Res. doi: 10.1017/S0007485312000880 PubMedGoogle Scholar
  32. Thabuis APP, Teekens KC, Van Herwijnen ZO (2011) Lettuce that is resistant to the lettuce aphid Nasonovia ribisnigri biotype 1. WIPO PCT/EP2010/067588Google Scholar
  33. Tjallingii WF (1988) Electrical recording of stylet penetration activities. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies and control, vol 2., BElsevier Science Publishers, Amsterdam, pp 95–108Google Scholar
  34. van Helden M, Tjallingii WF (1993) Tissue localisation of lettuce resistance to the aphid Nasonovia ribisnigri using electrical penetration graphs. Entomol Exp Appl 68(3):269–278CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Cindy J. M. ten Broeke
    • 1
  • Marcel Dicke
    • 1
  • Joop J. A. van Loon
    • 1
  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations