, Volume 193, Issue 2, pp 221–234 | Cite as

Mapping quantitative trait loci for yield-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

  • Yang Liu
  • Yun Zhang
  • Jiying Xing
  • Zhiyong Liu
  • Hui Feng


Chinese cabbage (Brassica rapa L. ssp. pekinensis) is one of the most important vegetables in China. However, the inheritance of yield-related traits in Chinese cabbage is poorly understood to date. To map quantitative trait loci (QTL) for yield-related traits in Chinese cabbage, a genetic linkage map was constructed with 192 doubled haploid (DH) lines. The genetic map was constructed based on 190 sequence-related amplified polymorphisms and 43 simple sequence repeats. QTL mapping was conducted for 11 yield-related traits in 170 DH lines derived from a cross between two diverse Chinese cabbage lines, ‘WZ’ and ‘FT’, under different environmental conditions. A total of 46 main QTL (M-QTL) and 7 epistatic QTL (E-QTL) were identified. The phenotypic variation explained by each M-QTL and E-QTL ranged from 4.85 to 25.06 % and 1.85 to 13.29 %, respectively. The QTL-by-environment interactions were detected using the QTLNetwork 2.0 program in joint analyses of multi-environment phenotypic values. The phenotypic variation explained by each QTL and by QTL × environment interaction was 1.14–4.24 % and 0.00–1.26 %, respectively. Our results provide a better understanding of the genetic factors controlling leaf and head-related traits in Chinese cabbage.


Simple sequence repeat (SSR) Quantitative trait loci (QTL) mapping Inheritance Yield-related traits QTLNetwork 2.0 Chinese cabbage 



This research was financially supported by a Grant from the National Natural Science Foundation of China (No. 31071792, 31272157).


  1. Carlborg Ö, Jacobsson L, Ahgren P, Siegel P, Andersson L (2006) Epistasis and the release of genetic variation during long-term selection. Nat Genet 38:418–420PubMedCrossRefGoogle Scholar
  2. Cheng XM, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131PubMedCrossRefGoogle Scholar
  3. Choi S, Teakle G, Plaha P, Kim J, Allender C, Beynon E, Piao Z, Soengas P, Han T, King G, Barker G, Hand P, Lydiate D, Batley J, Edwards D, Koo D, Bang J, Park BS, Lim Y (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792PubMedCrossRefGoogle Scholar
  4. Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346PubMedGoogle Scholar
  5. Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  6. Foisset N, Delourme R, Barret P, Hubert N, Landry BS, Renard M (1996) Molecular mapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a double haploid progeny. Theor Appl Genet 93:1017–1025CrossRefGoogle Scholar
  7. Ge Y, Ramchiary N, Wang T, Liang C, Wang N, Wang Z, Choi SR, Lim YP, Piao ZY (2011) Mapping quantitative trait loci for leaf and heading-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Hortic Environ Biotechnol 52:494–501CrossRefGoogle Scholar
  8. Ge Y, Wang T, Wang N, Wang Z, Liang C, Ramchisry N, Choi SR, Lim YP, Piao ZY (2012) Genetic mapping and localization of quantitative trait loci for chlorophyll II content in Chinese cabbage (Brassica rapa ssp. pekinensis). Sci Hortic 147:42–48CrossRefGoogle Scholar
  9. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83:250–256CrossRefGoogle Scholar
  10. Iniguez-Luy FL, Vande Voort A, Osborn TC (2008) Development of a set of public SSR markers derived from genomic equence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985PubMedCrossRefGoogle Scholar
  11. Kim HR, Choi SR, Bae JN, Hong CP, Lee SY, Hossain MJ, Nguyen DV, Jin MN, Park BS, Bang JW, Bancroft I, Lim YP (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics 10:432PubMedCrossRefGoogle Scholar
  12. Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174:29–39Google Scholar
  13. Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  14. Kubo T, Yoshimura A (2005) Epistasis underlying female sterility detected in hybrid breakdown in a Japonica–Indica cross of rice (Oryza sativa L.). Theor Appl Genet 110:346–355PubMedCrossRefGoogle Scholar
  15. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  16. Li ZK, Pinson SRM, Paterson AH, Park WD, Stansel JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465PubMedGoogle Scholar
  17. Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323PubMedCrossRefGoogle Scholar
  18. Li H, Yu SC, Zhang FL, Yu YJ, Zhao XY, Zhang DS, Zhao X (2011) Development of molecular markers linked to the resistant QTL for downy mildew in Brassica rapa L. ssp. pekinensis. Yi Chuan 33:1271–1278PubMedCrossRefGoogle Scholar
  19. Lin ZX, Zhang XL, Nie YC et al (2003) Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull 48:2064–2068Google Scholar
  20. Lou P, Zhao JJ, Kim JS, Shen S, Kunia PDC, Song XF, Jin MN, Vreugdenhil D, Wang XW, Koornneef M, Bonnema G (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016PubMedCrossRefGoogle Scholar
  21. Lou P, Xie Q, Xu X, Edwards CE, Brock MT, Weinig C, McClung CR (2011) Genetic architecture of the circadian clock and flowering time in Brassica rapa. Theor Appl Genet 123:397–409PubMedCrossRefGoogle Scholar
  22. Lowe AJ, Moule C, Trick M, Edwards K (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112PubMedCrossRefGoogle Scholar
  23. Lu G, Cao JS, Yu XL, Xiang X, Chen H (2008) Mapping QTLs for root morphological traits in Brassica rapa L. based on AFLP and RAPD markers. J Appl Genet 49:23–31PubMedCrossRefGoogle Scholar
  24. Malmberg RL, Held S, Waits A, Mauricio R (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the Weld and in the greenhouse. Genetics 171:2013–2027PubMedCrossRefGoogle Scholar
  25. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326PubMedCrossRefGoogle Scholar
  26. Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452Google Scholar
  27. Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523PubMedCrossRefGoogle Scholar
  28. Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179:1547–1558PubMedCrossRefGoogle Scholar
  29. Shen X, Zhang T, Guo W, Zhu X, Zhang X (2006) Mapping fiber and yield QTLs with main, epistatic and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci 46:61–66CrossRefGoogle Scholar
  30. Shibaike H (1998) Molecular genetic mapping and plant evolutionary biology. J Plant Res 111:383–388CrossRefGoogle Scholar
  31. Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8CrossRefGoogle Scholar
  32. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098PubMedCrossRefGoogle Scholar
  33. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319PubMedCrossRefGoogle Scholar
  34. Uzunova MI, Ecke W (1999) Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breed 118:323–326CrossRefGoogle Scholar
  35. Van Ooijen JW, Voorrips RE (2002) Join Map Version 3.0: software for the calculation of genetic linkage maps. CPRO-DLO, WageningenGoogle Scholar
  36. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  37. Wang ZF, Cheng JP, Chen ZW, Huang J, Bao YM, Wang JF, Zhang HS (2012) Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor Appl Genet 125:807–815PubMedCrossRefGoogle Scholar
  38. Wu WL, Zhou B, Luo D, Yan HF, Li YH, Kawabata SY (2012) Development of simple sequence repeat (SSR) markers that are polymorphic between cultivars in Brassica rapa subsp. rapa. Afr J Biotechnol 11:2654–2660CrossRefGoogle Scholar
  39. Würschum T, Maurer HP, Schulz B, Möhring J, Reif JC (2011) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123:109–118PubMedCrossRefGoogle Scholar
  40. Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536PubMedCrossRefGoogle Scholar
  41. Yu SB, Li JX, Tan YF, Gao YJ, Li XH, Zhang QF, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231PubMedCrossRefGoogle Scholar
  42. Yu SC, Zhang FL, Yu RB, Zou YM, Qi JN, Zhao XY, Yu YJ, Zhang DS, Li L (2009) Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Breed 23:573–590CrossRefGoogle Scholar
  43. Zeng ZB (2005) Modeling quantitative trait loci and interpretation of models. Genetics 169:1711–1725PubMedCrossRefGoogle Scholar
  44. Zhang JF, Lu Y, Yuan YI, Zhang XW, Geng JF, Chen Y, Cloutier S, McVetty PBE, Li GY (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yang Liu
    • 1
  • Yun Zhang
    • 1
  • Jiying Xing
    • 1
  • Zhiyong Liu
    • 1
  • Hui Feng
    • 1
  1. 1.Department of HorticultureShenyang Agricultural UniversityShenyangChina

Personalised recommendations