Advertisement

Euphytica

, Volume 191, Issue 3, pp 429–436 | Cite as

Bru1 gene and potential alternative sources of resistance to sugarcane brown rust disease

  • Josefina Racedo
  • María F. Perera
  • Romina Bertani
  • Claudia Funes
  • Victoria González
  • María I. Cuenya
  • Angélique D′Hont
  • Björn Welin
  • Atilio P. Castagnaro
Article

Abstract

Brown rust, caused by the fungus Puccinia melanocephala, is responsible for important yield losses in sugarcane production globally and it is therefore an important objective to introduce resistance to this disease in breeding programs. A major gene, Bru1, has been shown to confer resistance to P. melanocephala strains from different parts of the world and two molecular markers, R12H16 and 9O20-F4, closely associated to this gene have been previously reported. The usefulness of these molecular diagnostic markers in order to predict a rust resistant phenotype under natural high pressure inoculums conditions was analyzed. A total of 129 sugarcane accessions were evaluated under field infection for resistance or susceptibility to brown rust and subsequently screened for presence or absence of the two Bru1 diagnostic markers. A total of 49 genotypes (38 %) were phenotyped as resistant to brown rust but only eight (16.3 %) of them were harboring the Bru1 gene. To determine overall frequency of the Bru1 in the local sugarcane germplasm collection, 190 additional genotypes were examined. Presence of Bru1, as determined by the diagnostic markers, was detected in only 7 % of the genotypes evaluated. In conclusion, Bru1 diagnostic markers enable positive selection for brown rust resistance in sugarcane and moreover allowed detecting at least one additional source(s) of resistance. Interestingly, whilst only little genetic variability of rust resistance independent of Bru1 has been reported previously, this alternative genetic resource(s) found in our local germplasm constitutes the predominant one and should be helpful in order to amplify the narrow genetic basis for brown rust resistance in sugarcane.

Keywords

BruDisease resistance Genetic resources Molecular markers Puccinia melanocephala 

References

  1. Aljanabi SM, Forget L, Dookun A (1999) An improved and rapid protocol for the isolation of polysaccharide- and polyphenol-free sugarcane DNA. Plant Mol Biol Rep 17:1–8CrossRefGoogle Scholar
  2. Amorin L, Filho AB, Sanguino A, Nogueira Cardoso CO, de Moraes VA, Fernandes CR (1987) Metodología de avaliacao da ferrugem da cana de acucar (Puccinia melanocephala). Boletín Técnico Copersucar 39:13–16Google Scholar
  3. Anderson DL, Dean JL (1986) Relationship of rust severity and plant nutrients in sugarcane. Phytopathol 76:581–585CrossRefGoogle Scholar
  4. Anderson DL, Henderson LJ, Raid RN, Irey MS (1991) Sugarcane rust severity and leaf nutrient status. Sugar Cane 3:5–10Google Scholar
  5. Asnaghi C, D’Hont A, Glaszmann JC, Rott P (2001) Resistance of sugarcane cultivar R570 to Puccinia melanocephala from different geographic locations. Plant Dis 85:282–286CrossRefGoogle Scholar
  6. Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau J-Y, Télismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764PubMedCrossRefGoogle Scholar
  7. Bertani RP, Perera MF, Funes C, Kairuz CR, Arias M, González V, Ploper LD, Castagnaro AP (2012) Implementación de técnicas moleculares para el diagnóstico de los agentes causales de roya en caña de azúcar. Avance Agroind 33:23–26Google Scholar
  8. Costet L, Toubi L, Le Cunff L, Telismart H, Nibouche S, Royaert S, Glaszmann J-C, Garsmeur O, Raboin L-M, Rousselle Y, Hoarau J-Y, Hervouet C, Pauquet J, D’Hont A (2012) Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars. Theor Appl Genet 125:825–836PubMedCrossRefGoogle Scholar
  9. Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar “R570”. Theor Appl Genet 92:1059–1064CrossRefGoogle Scholar
  10. Feijóo M, Mestre F and Castagnaro AP (1997) Dry-bean production under climate change conditions in the north of Argentina: risk assessment and economic implications. 8th Global Warming International Conference and Expo, NY Columbia University, New York, 26–29 May 1997Google Scholar
  11. Funes C, Kairuz CR, Bertani RP, González V, Romero E and Ploper LD (2012) Efecto de la aplicación de un fungicida foliar en el control de la roya marrón de la caña de azúcar en Tucumán, R. Argentina. XVIII Reunión Técnica Nacional de la Caña de Azúcar, Tucumán, 11–13 April 2012Google Scholar
  12. Glynn NC, Laborde C, Davidson RW, Irey MS, Glaz B, D’Hont A, Comstock JC (2012) Utilization of a major brown rust resistance gene in sugarcane breeding. Mol Breed. doi: 10.1007/s11032-012-9792-x Google Scholar
  13. Hoy J (2005) Impact of rust on LCP 85–384. Sugar Bull 84:9–13Google Scholar
  14. Hoy JW, Hollier CA (2009) Effect of brown rust on yield of sugarcane in Louisiana. Plant Dis 93:1171–1174CrossRefGoogle Scholar
  15. Johnson RM, Grisham MP, Richard EP Jr (2007) Relationship between sugarcane rust severity and soil properties in Louisiana. Phytopathol 97:748–755CrossRefGoogle Scholar
  16. Le Cunff L, Garsmeur O, Raboin LM, Pauquet J, Télismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann JC, D’Hont A (2008) Diploid/polyploid syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploid sugarcane (2n 12x 115). Genetics 180:649–660PubMedCrossRefGoogle Scholar
  17. Ostengo S, Espinosa MA, García MB, Delgado N, Cuenya MI (2012) Distribución varietal del cultivo de la caña de azúcar y aplicación de nuevas tecnologías en la provincia de Tucumán. Relevamiento de la campaña 2010/2012. Gac. Agroindustrial EEAOC 76:1–14Google Scholar
  18. Perera MF, Arias ME, Costilla D, Luque AC, García MB, Díaz Romero AC, Racedo J, Ostengo S, Filippone MP, Cuenya MI, Castagnaro AP (2012) Genetic diversity assessment and genotype identification in sugarcane based on DNA markers and morphological traits. Euphytica 185:491–510CrossRefGoogle Scholar
  19. Priestly R (1978) Detection of increased virulence in populations of wheat yellow rust. In: Scott PR, Bainbridge A (eds) Plant disease epidemiology. Blackwell Scientific, Oxford, pp 63–70Google Scholar
  20. Raid RN, Comstock JC (2000) Common rust. In: Rott P, Bailey RA, Comstock JC, Croft BJ, Saumtally AS (eds) A guide to sugarcane diseases. CIRAD and ISSCT, Montpellier, pp 85–89Google Scholar
  21. Ramallo J, Ploper LD, Brito E, Giardina J (2005) Distribución y severidad de la roya marrón de la caña de azúcar en la variedad LCP 85–384 en Tucumán. Avance Agroind 26:9–11Google Scholar
  22. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  23. Vazquez de Ramallo N (1988) La roya de la caña de azúcar. Su presencia en la zona cañera de Tucumán. Avance Agroind 33:2–4Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Josefina Racedo
    • 1
  • María F. Perera
    • 1
  • Romina Bertani
    • 1
  • Claudia Funes
    • 1
  • Victoria González
    • 1
  • María I. Cuenya
    • 1
  • Angélique D′Hont
    • 2
  • Björn Welin
    • 1
  • Atilio P. Castagnaro
    • 1
  1. 1.Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITA-NOA), Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Las TalitasArgentina
  2. 2.Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAPMontpellier CedexFrance

Personalised recommendations