Advertisement

Euphytica

, Volume 192, Issue 1, pp 17–24 | Cite as

Mobilization of the active transposon mPing in interspecific hybrid rice between Oryza sativa and O. glaberrima

  • Kanako Yasuda
  • Takuji Tsukiyama
  • Shanta Karki
  • Yutaka Okumoto
  • Masayoshi Teraishi
  • Hiroki Saito
  • Takatoshi Tanisaka
Article

Abstract

Miniature Ping (mPing) is the first active miniature inverted-repeat transposable element to be identified in rice, and its mobilization is activated by stress treatments. We have examined the mobilization of mPing in four NERICA (New Rice for Africa) lines and 13 interspecific lines. All 17 lines are inbred progenies derived from crosses between Oryza sativa variety WAB56-104 as the recurrent parent and the O. glaberrima variety CG14 as the donor parent. We found that 16 of the 17 lines studied inherited mPing together with its autonomous partner, Pong, from WAB56-104. Transposon display of mPing disclosed polymorphic banding patterns among these lines. Most importantly, seven of the lines displayed clear polymorphic banding patterns for mPing, indicating that mPing might have been mobilized in these lines. Locus-specific PCR analysis also confirmed the mobilization of mPing. These results signify that interspecific hybridization may activate the transposition of mPing. Based on these results, we discuss the potential use of the mPing system as an efficient tool for gene tagging in interspecific hybrid rice.

Keywords

Interspecific cross Interspecific hybrid rice Mobilization mPing Transposon 

Notes

Acknowledgments

We thank the WARDA for providing the plant materials of the NERICA and interspecific lines. This study was supported by grants from the Ministry of Education, Culture, Sports and Technology of Japan in the form of Grants-in-Aid for Scientific Research, 21380004.

References

  1. An G, Jeong DH, Jung KH, Lee S (2005) Reverse genetic approaches for functional genomics of rice. Plant Mol Biol 59:111–123PubMedCrossRefGoogle Scholar
  2. Baack EJ, Rieseberg LH (2007) A genomic view of introgression and hybrid speciation. Curr Opin Genet Dev 17:513–518PubMedCrossRefGoogle Scholar
  3. Casa AM, Nagel A, Wessler SR (2004) MITE display. Methods Mol Biol 260:175–188PubMedGoogle Scholar
  4. Ghesquiere A, Sequier J, Second G, Lorieux M (1997) First step toward a rational use of African rice O. glaberrima in rice breeding through a ‘contig line’ concept. Euphytica 96:31–39CrossRefGoogle Scholar
  5. Hancock CN, Zhang F, Wessler SR (2010) Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily. Mobile DNA 1:5PubMedCrossRefGoogle Scholar
  6. Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 100:735–741Google Scholar
  7. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788PubMedCrossRefGoogle Scholar
  8. Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, Cheng Z (2009) Identification of a high frequency transposon induced by tissue culture, nDaiz, a member of the hAT family in rice. Genomics 93:274–281PubMedCrossRefGoogle Scholar
  9. Jiang N, Wessler SR (2002) Rice non-autonomous DNA transposon STOWAWAY13_OS. Repbase Rep 2:7Google Scholar
  10. Jiang N, Bao Z, Zhang X, Hirochika H, Eddy SR, McCouch SR, Wessler SR (2003) An active DNA transposon family in rice. Nature 421:163–167PubMedCrossRefGoogle Scholar
  11. Jones MP, Mande S, Aluko K (1997a) Diversity and potential of Oryza glaberrima Steud. in upland rice breeding. Breed Sci 47:395–398Google Scholar
  12. Jones MP, Dingkuhn M, Aluko GK, Semon M (1997b) Interspecific Oryza Sativa L. X O. Glaberrima Steud. progenies in upland rice improvement. Euphytica 92:237–246CrossRefGoogle Scholar
  13. Karki S, Tsukiyama T, Okumoto Y, Rizal G, Naito K, Teraishi M, Nakazaki T, Tanisaka T (2009) Analysis of distribution and proliferation of mPing family transposons in a wild rice (Oryza rufipogon Griff.). Breed Sci 59:297–307CrossRefGoogle Scholar
  14. Kikuchi K, Terauchi K, Wada M, Hirano HY (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170PubMedCrossRefGoogle Scholar
  15. Kim CM, Je BI, Piao HL, Park SJ, Kim MJ, Park SH, Park JY, Park SH, Lee EK, Chon NS, Won YJ, Lee GH, Nam MH, Yun DW, Lee MC, Cha YS, Lee KH, Eun MY, Han CD (2002) Reprogramming of the activity of the activator/dissociation transposon family during regeneration in rice. Mol Cells 14:231–237PubMedGoogle Scholar
  16. Lin X, Long L, Shan X, Zhang S, Shen S, Liu B (2006) In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization. J Exp Bot 57:2313–2323PubMedCrossRefGoogle Scholar
  17. Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci USA 99:16360–16365PubMedCrossRefGoogle Scholar
  18. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801PubMedCrossRefGoogle Scholar
  19. Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780PubMedCrossRefGoogle Scholar
  20. Moon S, Jung KH, Lee D, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G (2006) Identification of active transposon dTok, a member of the hAT family, in rice. Plant Cell Physiol 47:1473–1483PubMedCrossRefGoogle Scholar
  21. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326PubMedCrossRefGoogle Scholar
  22. Naito K, Cho E, Yang G, Campbell MA, Yano K, Okumoto Y, Tanisaka T, Wessler SR (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci USA 103:17620–17625PubMedCrossRefGoogle Scholar
  23. Nakazaki T, Okumoto Y, Horibata A, Yamahira S, Teraishi M, Nishida H, Inoue H, Tanisaka T (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172PubMedCrossRefGoogle Scholar
  24. Ngezahayo F, Xu C, Wanf H, Jiang L, Pang J, Liu B (2009) Tissue culture-induced transpositional activity of mPing is correlated with cytosine methylation in rice. BMC Plant Biol 9:91PubMedCrossRefGoogle Scholar
  25. O’Neill RJW, O’Neill MJ, Graves JAM (1998) Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393:68–72PubMedCrossRefGoogle Scholar
  26. Oki N, Okumoto Y, Tsukiyama T, Naito K, Nakazaki T, Tanisaka T (2007) A novel transposon Pyong in the japonica rice variety Gimbozu. Kinki J Crop Sci Breed 52:39–42Google Scholar
  27. Saito H, Yuan Q, Okumoto Y, Doi K, Yoshimura A, Inoue H, Teraishi M, Tsukiyama T, Tanisaka T (2009) Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.). Theor Appl Genet 119:315–323PubMedCrossRefGoogle Scholar
  28. Sarla N, Swamy BPM (2005) Oryza glaberrima: a source for the improvement of Oryza sativa. Curr Sci 89:955–963Google Scholar
  29. Semagn K, Ndjiondjop MN, Lorieux M, Jones M, McCouch S (2007) Molecular profiling of an interspecific rice population derived from a cross between WAB56-104 (Oryza sativa) and CG 14 (Oryza glaberrima). Afr J Biotechnol 6:2014–2022Google Scholar
  30. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759PubMedGoogle Scholar
  31. Shan X, Liu Z, Dong Z, Wang Y, Chen Y, Lin X, Long L, Han F, Dong Y, Liu B (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol 22:976–990PubMedCrossRefGoogle Scholar
  32. Somado EA, Guei RG, Keya SO (2008) NERICA: the new rice for Africa—a compendium. Pragati Offset, HyderabadGoogle Scholar
  33. Tagawa T, Hirao K, Kubota F (2000) A specific feature of nitrogen utilization efficiency in leaf photosynthesis in O. glaberrima Steud. J Crop Sci 69:74–79CrossRefGoogle Scholar
  34. Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun CH, Iida S (2006) An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice. Plant J 45:46–57PubMedCrossRefGoogle Scholar
  35. Xu X, Walters C, Antolin MF, Alexander ML, Luts S, Ge S, Wen J (2010) Phylogeny and biogeography of the eastern Asian-North American disjunct wild-rice genus (Zizania L., Poaceae). Mol Phylogenet Evol 55:1008–1017PubMedCrossRefGoogle Scholar
  36. Yang G, Zhang F, Hancock CN, Wessler SR (2007) Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:10962–10967PubMedCrossRefGoogle Scholar
  37. Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kanako Yasuda
    • 1
  • Takuji Tsukiyama
    • 1
  • Shanta Karki
    • 2
  • Yutaka Okumoto
    • 1
  • Masayoshi Teraishi
    • 1
  • Hiroki Saito
    • 1
  • Takatoshi Tanisaka
    • 1
  1. 1.Graduate School of Agriculture Kyoto UniversitySakyo-ku, KyotoJapan
  2. 2.International Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations