, Volume 189, Issue 2, pp 217–223 | Cite as

QTL mapping of pod tenderness and total soluble solid in yardlong bean [Vigna unguiculata (L.) Walp. subsp. unguiculata cv.-gr. sesquipedalis]

  • Alisa Kongjaimun
  • Prakit Somta
  • Norihiko Tomooka
  • Akito Kaga
  • Duncan A. Vaughan
  • Peerasak Srinives


Yardlong bean [Vigna unguiculata ssp. unguiculata cv.-gr. sesquipedalis] is an important vegetable legume, particularly in Asia. Tenderness and sweetness of fresh pods are the key factors in deciding the commercial acceptance of yardlong bean. We report here for the first time quantitative trait loci (QTL) mapping of these traits from crosses between the yardlong bean accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession JP89083. Two SSR-based linkage maps developed from BC1F1 [(JP81610 × JP89083) × JP81610] and F2 (JP81610 × JP89083) populations were used for QTL analysis of pod tenderness and total soluble solid (TSS) content. Composite interval mapping (CIM) identified three QTLs for pod tenderness with phenotypic variance explained (PVE) of 5.6–50 % and alleles from JP81610 increased the tenderness. CIM detected two QTLs for pod TSS with PVE of 7 and 9 %, and alleles from JP89083 increased TSS. Locations of these QTLs were compared with those of QTLs controlling domestication-related traits identified in the same populations. All QTLs for pod tenderness co-localized with QTLs for pod length. QTLs for pod TSS co-located with QTLs for pod dehiscence and/or pod length. The implications of these QTLs in breeding new yardlong bean and cowpea cultivars are discussed.


Yardlong bean Cowpea Pod quality Pod tenderness Total soluble solid 



This study was financially supported by the Royal Golden Jubilee Ph.D. Program of the Thailand Research Fund (TRF).

Supplementary material

10681_2012_781_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 17 kb)


  1. Azanza KB, Young TE, Kim D, Tanksley SD, Juvik JA (1994) Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersicon chmielewskii on tomato soluble solids, pH, and yield. Theor Appl Genet 87:965–972CrossRefGoogle Scholar
  2. Chetelat RT, De Verna JW, Bennett AB (1995) Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor Appl Genet 91(2):327–333Google Scholar
  3. Eshed Y, Zamir D (1994) Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids. Theor Appl Genet 88:891–897CrossRefGoogle Scholar
  4. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723PubMedCrossRefGoogle Scholar
  5. Husain SE, James C, Shields R, Foyer CH (2001) Manipulation of fruit sugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium. New Phytol 150:65–72CrossRefGoogle Scholar
  6. Juwattanasomran R, Somta P, Chankaew S, Shimizu T, Wongpornchai S, Kaga A, Srinives P (2011) A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety “Kaori” and SNAP marker development for the fragrance. Theor Appl Genet 122:533–541PubMedCrossRefGoogle Scholar
  7. Juwattanasomran R, Somta P, Kaga A, Chankaew S, Shimizu T, Sorajjapinun W, Srinives P (2012) Identification of a new fragrance allele in soybean and development of its functional marker. Mol Breed 29:13–21CrossRefGoogle Scholar
  8. Kader AA (1996) Maturity, ripening, and quality relationships of fruit-vegetable. Acta Hort 434:249–256Google Scholar
  9. Kearsey MJ, Pooni HS (1956) The genetical analysis of quantitative traits. Chapman & Hall, LondonGoogle Scholar
  10. Kim HY, Kang ST, Oh KW (2006) Mapping of putative quantitative trait loci controlling the total oligosaccharide and sucrose content of Glycine max seeds. J Plant Res 119:533–538PubMedCrossRefGoogle Scholar
  11. Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Isemura T, Vaughan DA, Srinives P (2012a) An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. subsp. unguiculata sesquipedalis group) and QTL analysis of pod length. Genome 55:81–92PubMedCrossRefGoogle Scholar
  12. Kongjaimun A, Kaga A, Tomooka N, Somta P, Vaughan DA, Srinives P (2012b) The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis. Ann Bot 109:1185–1200PubMedCrossRefGoogle Scholar
  13. Maughan PJ, Saghai-Maroof MA, Buss GR (2000) Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Mol Breed 6:105–111CrossRefGoogle Scholar
  14. Pérez-Alfocea F, Balibrea ME, Bolarín MC, Cuartero J (1997) Efecto de la salinidad sobre el rendimiento y la calidad del fruto en Lycopersion esculentum, L. pimpinellifolium y en sus híbridos interspecíficos. Acta Hortic 16:243–247Google Scholar
  15. Pornsuriya P (1994) Comparison and inheritance of pod quality in crosses between yardlong bean and cowpea. MS Thesis, Kasetsart University, BangkokGoogle Scholar
  16. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for statistical computing, ViennaGoogle Scholar
  17. Romkaew J, Nagaya Y, Goto M, Suzuki K, Umezaki T (2008) Pod dehiscence in relation to chemical components of pod shell in soybean. Plant Prod Sci 11:278–282CrossRefGoogle Scholar
  18. Singh BB (2005) Cowpea [Vigna unguiculata (L.) Walp.]. In: Singh RJ, Jauhar PP (eds.) Genetic resources chromosome engineering and crop improvement. Taylor & Francis, LLC, pp 117–161Google Scholar
  19. Smartt J (1990) Grain legumes: evolution and genetic resources. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Somta P, Kaga A, Tomooka N, Kashiwaba K, Isemura T, Chaitieng B, Srinives P, Vaughan DA (2006) Development of an interspecific Vigna linkage map between Vigna umbellata (Thunb.) Ohwi & Ohashi and V. nakashimae (Ohwi) Ohwi & Ohashi and its use in analysis of bruchid resistance and comparative genomics. Plant Breed 125:77–84CrossRefGoogle Scholar
  21. Steele WM, Mehra KL (1980) Structure, evolution, and adaptation to farming systems and environments in Vigna. In: Summerfield RJ, Bunting AH (eds) Advances in Legume Sciences. Royal Botanic Gardens, Kew, pp 393–404Google Scholar
  22. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 22:1063–1066CrossRefGoogle Scholar
  23. VandenLangenberg KM, Bethke PC, Nienhuis J (2012) Identification of quantitative trait loci associated with fructose, glucose, and sucrose concentration in snap bean (Phaseolus vulgaris L.) pods. Crop Sci. doi: 10.2135/cropsci2011.07.0396 Google Scholar
  24. Verdcourt B (1970) Studies in the Leguminosae–Papilionoideae for the ‘Flora of Tropical East Africa’: IV. Kew Bull 24:507–569CrossRefGoogle Scholar
  25. Wang S, Basten C, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, RaleighGoogle Scholar
  26. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1466PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alisa Kongjaimun
    • 1
  • Prakit Somta
    • 1
  • Norihiko Tomooka
    • 2
  • Akito Kaga
    • 2
  • Duncan A. Vaughan
    • 2
  • Peerasak Srinives
    • 1
  1. 1.Department of Agronomy, Faculty of Agriculture at Kamphaeng SaenKasetsart UniversityNakhon PathomThailand
  2. 2.Genetic Resources CenterNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations