Skip to main content

Advertisement

Log in

SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sorghum is an energy crop with high biomass production potential and low input requirement. To identify markers linked to grain and biomass production traits, 43 SSR markers were mapped for association with tiller number and kernel weight using the sorghum mini core of 242 landraces. While kernel weight was evaluated in two environments, tiller number was evaluated in four environments. The number of SSR alleles was positively correlated with polymorphism information content for the markers. Association mapping found one marker (4-162) linked to kernel weight and two (40-1896 and 81-108) to tiller numbers. 4-162 and 40-1896 co-localized with previously mapped quantitative trait loci. Localized association mapping around 81-108 identified an amino-cyclopropane-carboxylate (ACC) oxidase gene as a candidate for tiller number. ACC oxidase is an ethylene forming enzyme and increased ethylene level has been shown to increase the number of tillers in the grass family. The results provide the groundwork to identify genes regulating kernel weight and tiller number in sorghum in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amthor JS (1983) Sorghum seedling growth as a function of sodium chloride salinity and seed size. Ann Bot 52:915–917

    CAS  Google Scholar 

  • Ayana A, Bekele E (2000) Geographical patterns of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: quantitative characters. Euphytica 115:91–104

    Article  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra K, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    PubMed  CAS  Google Scholar 

  • Boivin K, Deu M, Rami JF, Trouche G, Hamon P (1999) Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98:320–328

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH, Jessup R, Lemke C, Lennington J, Li Z, Lin YR, Liu SC, Luo L, Marler BS, Ming R, Mitchell SE, Qiang D, Reischmann K, Schulze SR, Skinner DN, Wang YW, Kresovich S, Schertz KF, Paterson AH (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  PubMed  CAS  Google Scholar 

  • Brown PJ, Rooney WL, Franks C, Kresovich S (2008) Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics 180:629–637

    Article  PubMed  Google Scholar 

  • Burow GB, Klein RR, Franks CD, Klein PE, Schertz KF, Pederson GA, Xin Z, Burke JJ (2011) Registration of the BTx623/IS3620C recombinant inbred mapping population of sorghum. J Plant Regist 5:141–145

    Article  Google Scholar 

  • Casa AM, Pressoir GH, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Chittenden LM, Schertz KF, Lin YR, Wing RA, Paterson AH (1994) A detailed RFLP map of Sorghum bicolor × S. propinquum, suitable for high-density mapping, suggests ancestral duplication of sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933

    Article  CAS  Google Scholar 

  • Elangovan M, Prabhakar P, Reddy DCS (2007) Characterization and evaluation of sorghum [Sorghum bicolor (L.)] germplasm from Karnataka, India. Karnataka J Agric Sci 20:840–842

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Foster KR, Reid DM, Pharis RP (1992) Ethylene biosynthesis and ethephon metabolism and transport in barley. Crop Sci 32:1345–1352

    Article  CAS  Google Scholar 

  • Grenier C, Bramel-Cox PJ, Hamon P (2001a) Core collection of sorghum: I. Stratification based on eco-geographical data. Crop Sci 41:234–240

    Article  Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001b) Core collection of sorghum: II. Comparison of three random Sampling strategies. Crop Sci 41:241–246

    Article  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287

    Article  CAS  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morshige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Dong L, Hart GE (2000) Characteristics, linkage-map positions, and allelic differentiation of Sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet 101:438–448

    Article  CAS  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317–321

    Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  PubMed  CAS  Google Scholar 

  • Maranville JW, Clegg MD (1977) Influence of seed size and density on germination, seedling emergence, and yield of grain sorghum. Agron J 69:329–330

    Article  Google Scholar 

  • Martin JH, Waldren RP, Stamp DL (2004) Principles of field crop production, Chap. 13. Pearson/Prentice Hall, Upper Saddle River, pp 341–366

    Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008a) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S (2008b) Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci 48:2180–2193

    Article  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995a) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1717

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995b) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.). Proc Natl Acad Sci USA 92:6127–6131

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Google Scholar 

  • Peng Y, Schertz KF, Cartinhour S, Hart GE (1999) Comparative genome mapping of Sorghum bicolor (L.) Moench using an RFLP map constructed in a population of recombinant inbred lines. Plant Breed 118:225–235

    Article  CAS  Google Scholar 

  • Pereira MG, Ahnert D, Lee M, Klier K (1995) Genetic-mapping of quantitative trait loci for panicle characteristics and kernel weight in sorghum. Braz J Genet 18:249–257

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Ramu P, Deshpande SP, Senthilvel S, Jayashree B, Billot C, Deu M, Ananda Reddy L, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breeding 26:409–418

    Article  Google Scholar 

  • Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Bioref 1:147–157

    Article  CAS  Google Scholar 

  • Seneweera S, Aben SK, Basra AS, Jones B, Conroy JP (2003) Involvement of ethylene in the morphological and developmental response of rice to elevated atmospheric CO2 concentrations. Plant Growth Regul 39:143–153

    Article  CAS  Google Scholar 

  • Shatters RG Jr, Wheeler R, West SH (1998) Ethephon induced changes in vegetative growth of ‘Tifton 85’ bermudagrass. Crop Sci 38:97–103

    Article  CAS  Google Scholar 

  • Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Swanson AF, Hunter R (1936) Effect of germination and seed size on sorghum stands. J Am Soc Agron 28:997–1004

    Article  Google Scholar 

  • Tesso T, Tirfessa A, Mohammed H (2011) Association between morphological traits and yield components in the durra sorghums of Ethiopia. Hereditas 148:98–109

    Article  PubMed  Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Wang YH, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breeding. doi:10.1007/s11032-011-9617-3

    Google Scholar 

  • Williams CE, Ronald PC (1994) PCR template-DNA isolated quickly from monocot and dicot leaves without tissue homogenization. Nucleic Acids Res 22:1917–1918

    Article  PubMed  CAS  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the University of Louisiana at Lafayette and the International Crops Research Institute for the Semi-Arid Tropics. We thank the reviewers for their critical comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hong Wang.

Additional information

Hari D. Upadhyaya and Yi-Hong Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Upadhyaya, H.D., Wang, YH., Sharma, S. et al. SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187, 401–410 (2012). https://doi.org/10.1007/s10681-012-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0726-9

Keywords

Navigation