Advertisement

Euphytica

, Volume 186, Issue 2, pp 445–452 | Cite as

Improved S-genotyping and new incompatibility groups in Japanese plum

  • María E. Guerra
  • Margarita López-Corrales
  • Ana Wünsch
Article

Abstract

The selection of cross-compatible cultivars is essential to ensure fruit set in self-incompatible species like Japanese plum and thus the S-genotype must be determined in order to establish incompatibility groups. In this study an improved Japanese plum S-genotyping method, based in polymerase chain reaction and capillary electrophoresis detection of intron polymorphisms of S-locus genes, S-RNase and SFB, has been assayed and validated in a wide sample of cultivars. This method allows a more precise determination of amplified fragment sizes and therefore a better differentiation of self-incompatibility alleles. The assayed methodology was proven effective in the detection of 13 different S-alleles of S-RNases and SFBs and was used to S-genotype 105 Japanese plum cultivars, 32 of which are described by first time in this work. Analysed cultivars were assigned into 11 incompatibility groups and two new incompatibility groups (XX and XXI) were identified, increasing to 21 the number of incompatibility groups described in this crop.

Keywords

S-RNase SFB Prunus salicina S-allele Self-incompatibility PCR 

Notes

Acknowledgments

We gratefully acknowledge J.L. Espada [Centro de Técnicas Agrarias (CTA-DGA)], M. Alonso [Cooperativa de Regantes de Extremadura (CREX)], I. Iglesias [Institut de Recerca i Tecnologia Agroalimentàries (IRTA-Generalitat de Catalunya)], J. R. Rituerto (RITUCON Consultoría Agronómica), Grupo ALM, Viveros Provedo, Viveros Atanasio Naranjo, Agroseguro S.A., USDA-ARS-National Clonal Germplasm Repository (Davis, California) and Dr. R. Tao (Kyoto University, Japan) for providing plant material used in this work. Financial support for this research was provided by the Spanish Ministry of Science and Innovation-European Regional Development Fund (ERDF), European Union(Project grants: AGL2009-12621-C02-02; NIA-RTA2009-000144), Government of Aragón (Grupo de Excelencia A-43) and M.E. Guerra was financed by an Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) doctoral fellowship.

References

  1. Beppu K, Yamane H, Yaegaki H, Yamaguchi M, Kataoka I, Tao R (2002) Diversity of SRNase genes and S-haplotypes in Japanese plum (Prunus salicina Lindl.). J Hortic Sci Biotechnol 77:658–664Google Scholar
  2. Beppu K, Takemoto Y, Yamane H, Yaegaki H, Yamaguchi M, Kataoka I, Tao R (2003) Determination of S-haplotypes of Japanese plum (Prunus salicina Lindl.) cultivars by PCR and cross-pollination tests. J Hortic Sci Biotechnol 78:315–318Google Scholar
  3. Beppu K, Komatsu N, Yamane H, Yaegaki H, Yamaguchi M, Tao R, Kataoka I (2005) Se-haplotype confers self-compatibility in Japanese Plum (Prunus salicina Lindl.). J Hortic Sci Biotechnol 80:760–764Google Scholar
  4. Beppu K, Endo I, Kataoka I (2010a) Self-compatibility in the Japanese plum cultivar ‘Honey Rosa’. Acta Hortic 874:157–162Google Scholar
  5. Beppu K, Syogase K, Yamane H, Tao R, Kataoka I (2010b) Inheritance of self-compatibility conferred by the Se-haplotype of Japanese plum and development of Se RNase gene-specific PCR primers. J Hortic Sci Biotechnol 85:215–218Google Scholar
  6. De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, BerlinGoogle Scholar
  7. FAOSTAT (2010) faostat.fao.org. Accessed 20 October 2011Google Scholar
  8. Guerra ME, Rodrigo J, Lopez-Corrales M, Wunsch A (2009) S-RNase genotyping and incompatibility group assignment by PCR and pollination experiments in Japanese plum. Plant Breed 128:304–311CrossRefGoogle Scholar
  9. Guerra ME, Wünsch A, López-Corrales M, Rodrigo J (2010) Flower emasculation as the cause for lack of fruit set in Japanese plum crosses. J Am Soc Hortic Sci 135:556–562Google Scholar
  10. Guerra ME, Wünsch A, López-Corrales M, Rodrigo J (2011) Lack of fruit set caused by ovule degeneration in Japanese plum. J Am Soc Hortic Sci 136:1–7Google Scholar
  11. Halász J, Hegedűs A, Szabó Z, Nyéki J, Pedryc A (2007) DNA-based S-genotyping of Japanese plum and pluot cultivars to clarify incompatibility relationships. Hortscience 42:46–50Google Scholar
  12. Hormaza JI (2002) Molecular characterization and similarity relationships among apricot (Prunus armeniaca L.) genotypes using simple sequence repeats. Theor Appl Genet 104:321–328PubMedCrossRefGoogle Scholar
  13. Kao T, Tsukamoto T (2004) The molecular and genetic bases of S-RNase-based self-incompatibility. Plant Cell 16:72–83CrossRefGoogle Scholar
  14. Kitashiba H, Zhang SL, Wu J, Shirasawa K, Nishio T (2008) S genotyping and S screening utilizing SFB gene polymorphism in Japanese plum and sweet cherry by dot-blot analysis. Mol Breed 21:339–349CrossRefGoogle Scholar
  15. Okie WR, Weinberger JH (1996) Plums. In: Janick J, Moore JN (eds) Fruit Breeding, vol I. Wiley, New York, pp 559–607Google Scholar
  16. Ramming DW (1994) Register of new fruit and nut varieties. Brooks and Olmo. HortScience 29:955–956Google Scholar
  17. Ramming DW, Cociu V (1990) Genetics resources of temperate fruit and nut crops. Plums. Acta Hortic 290:235–287Google Scholar
  18. Sapir G, Stern RA, Eisikowitch D, Goldway M (2004) Cloning of four new Japanese plum S-alleles and determination of the compatibility between cultivars by PCR analysis. J Hortic Sci Biotechnol 79:223–227Google Scholar
  19. Sapir G, Stern RA, Goldway M, Shafir S (2007) SFBs of Japanese plum (Prunus salicina): cloning seven alleles and determining their linkage to the S-RNase gene. Hortscience 42:1509–1512Google Scholar
  20. Sapir G, Stern RA, Shafir S, Goldway M (2008) S-RNase based S-genotyping of Japanese plum (Prunus salicina Lindl.) and its implication on the assortment of cultivar-couples in the orchard. Sci Hortic-Amsterdam 118:8–13. doi: 10.1016/j.scienta.2008.05.004 CrossRefGoogle Scholar
  21. Sonneveld T, Tobutt KR, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S1 to S16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070PubMedCrossRefGoogle Scholar
  22. Sonneveld T, Robbins TP, Tobutt KR (2006) Improved discrimination of self-incompatibility S-RNase alleles in cherry and high throughput genotyping by automated sizing of first intron polymerase chain reaction products. Plant Breed 125:305–307CrossRefGoogle Scholar
  23. Tao R, Yamane H, Sassa H, Mori H, Gradziel TM, Dandekar AM, Sugiura A (1997) Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis). Plant Cell Physiol 38:304–311PubMedCrossRefGoogle Scholar
  24. Tao R, Yamane H, Sugiura A, Murayama H, Sassa H, Mori H (1999) Molecular typing of S-alleles through identification, characterization and cDNA cloning for S-RNases in sweet cherry. J Am Soc Hortic Sci 124:224–233Google Scholar
  25. Tao R, Watari A, Hanada T, Habu T, Yaegaki H, Yamaguchi M, Yamane H (2006) Self-compatible peach (Prunus persica) has mutant versions of the S haplotypes found in self-incompatible Prunus species. Plant Mol Biol 63:109–123PubMedCrossRefGoogle Scholar
  26. Ushijima K, Sassa H, Dandekar AM, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781PubMedCrossRefGoogle Scholar
  27. Vaughan SP, Russell K, Sargent DJ, Tobutt KR (2006) Isolation of S-locus F-box alleles in Prunus avium and their application in a novel method to determine self-incompatibility genotype. Theor Appl Genet 112:856–866PubMedCrossRefGoogle Scholar
  28. Watari A, Hanada T, Yamane H, Esumi T, Tao R, Yaegaki H, Yamaguchi M, Beppu K, Kataoka I (2007) A low transcriptional level of S-e-RNase in the S-e-haplotype confers self-compatibility in Japanese plum. J Am Soc Hortic Sci 132:396–406Google Scholar
  29. Wünsch A, Hormaza JI (2004) S-allele identification by PCR analysis in sweet cherry cultivars. Plant Breed 123:327–331CrossRefGoogle Scholar
  30. Yamane H, Tao R, Sigiura A (1999) Identification and cDNA cloning for S-RNases in self incompatible Japanese plum (Prunus salicina Lind. cv Sordum). Plant Biotechnol 16:389–396CrossRefGoogle Scholar
  31. Yamane H, Tao R, Sugiura A, Hauck NR, Iezzoni AF (2001) Identification and characterization of S-RNases in tetraploid sour cherry (Prunus cerasus). J Am Soc Hortic Sci 126:661–667Google Scholar
  32. Yamane H, Ikeda K, Hauck NR, Iezzoni AF, Tao RT (2003) Self-incompatibility (S) locus region of the mutated S-6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. J Exp Bot 54:2431–2437PubMedCrossRefGoogle Scholar
  33. Zhang SL, Huang SX, Kitashiba H, Nishio T (2007) Identification of S-haplotype-specific F-box gene in Japanese plum (Prunus salicina Lindl.). Sex Plant Reprod 20:1–8CrossRefGoogle Scholar
  34. Zhang SJ, Huang SX, Heng W, Wu HQ, Wu J, Zhang SL (2008) Identification of S-genotypes in 17 Chinese cultivars of Japanese plum (Prunus salicina Lindl.) and molecular characterisation of 13 novel S-alleles. J Hortic Sci Biotechnol 83:635–640Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • María E. Guerra
    • 1
  • Margarita López-Corrales
    • 1
  • Ana Wünsch
    • 2
  1. 1.Departmento de HortofruticulturaCentro de Investigación Agraria ‘Finca La Orden-Valdesequera’GuadajiraSpain
  2. 2.Unidad de FruticulturaCentro de Investigación y Tecnología Agroalimentaria de Aragón (CITA)ZaragozaSpain

Personalised recommendations