, Volume 186, Issue 2, pp 393–407 | Cite as

Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny

  • Almudena Bayo-Canha
  • José Ignacio Fernández-Fernández
  • Adrian Martínez-Cutillas
  • Leonor Ruiz-García


The aim of this work was to study the phenotypic segregation of different agronomic and fruit quality traits, and their relationships, in Monastrell × Syrah wine grape progeny. Twenty-two agronomic traits were evaluated and compared for three consecutive years in this progeny. The results show the phenotypic diversity existing in a cross between two different wine grape cultivars. Most of the phenological, productive, morphological, and enological parameters evaluated displayed continuous variation within the progeny, suggesting a polygenic inheritance. Some correlations between traits were detected by the Spearman correlation test, although high coefficients were not found for most of them. Cluster analysis of the progeny grouped the hybrids based on criteria with significance for wine grape breeding. Also, we investigated the relationship between the skin color and total content of anthocyanins with the VvmybA genotype, using the CAPS (Cleaved Amplified Polymorphic Sequence) marker 20D18CB9. The results show that hybrids with two copies of the functional color allele tend to have increased anthocyanins content. Based on this study, 14 genotypes were pre-selected from the breeding population for additional quality studies.


Continuous variation Fruit quality Hybrids selection Phenological traits Vitis vinifera 



The authors wish to thank A. Fuentes for her technical assistance, S. Fernández for progeny management, and D.J. Walker for review the quality of the English. This research was funded by the 2007-00043-INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria) project, co-financed by the European Regional Development Fund. L. Ruiz-García worked previously under an INIA contract co-financed by the European Social Fund, and currently works under a contract co-financed by the European Regional Development Fund.


  1. Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y (2008) Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theor Appl Genet 117:1009–1019. doi: 10.1007/s00122-008-0840-1 PubMedCrossRefGoogle Scholar
  2. Azuma A, Kobayashi S, Goto-Yamamoto N, Shiraishi M, Mitani N, Yakushiji H, Koshita Y (2009) Color recovery in berries of grape (Vitis vinifera L.) ‘Benitaka’, a bud sport of ‘Italia’, is caused by a novel allele at the VvmybA1 locus. Plant Sci 176:470–478. doi: 10.1016/j.plantsci.2008.12.015 CrossRefGoogle Scholar
  3. Baggiolini M (1952) Les stades repères dans le developpement annuel de la vigne et leur utilisation pratique. Rev Romande Agric Vitic Arbor 8:4–6Google Scholar
  4. Bohner J, Bangerth F (1988) Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in fruit size. Physiol Plant 72:316–320. doi: 10.1111/j.1399-3054.1988.tb05839.x CrossRefGoogle Scholar
  5. Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066. doi: 10.1104/pp.111.4.1059 PubMedGoogle Scholar
  6. Boulton R (1980a) The relationships between total acidity, titratable acidity and pH in wine. Am J Enol Vitic 31:76–80Google Scholar
  7. Boulton R (1980b) The general relationship between potassium, sodium, and pH in grape juice and wine. Am J Enol Vitic 31:182–186Google Scholar
  8. Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi: 10.1029/2006JD008249 CrossRefGoogle Scholar
  9. Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585. doi: 10.1139/G08-116 PubMedCrossRefGoogle Scholar
  10. Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food (Global Science Books) 1:1–22Google Scholar
  11. Coombe BG (1988) Grapevine phenology. In: Coombe BG, Dry P (eds) Viticulture. Chap. 7, vol 1. Winetitles Adelaide, SA, pp 139–153Google Scholar
  12. Coombe BG, Hale RC (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol 51:629–634. doi: 10.1104/pp.51.4.629 PubMedCrossRefGoogle Scholar
  13. Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38–54. doi: 10.1186/1471-2229-8-38 PubMedCrossRefGoogle Scholar
  14. Costantini L, Moreira FM, Zypriani E, Martínez-Zapater JM, Grando MS (2009) Molecular maps, QTL mapping and association mapping in grapevine. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology & biotechnology, 2nd edn. Kluwer Academis Publishers, Dordrecht, pp 535–564. doi: 10.1007/978-90-481-2305-6_20
  15. Dalbò MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340. doi: 10.1139/gen-43-2-333 PubMedCrossRefGoogle Scholar
  16. de Leão PC S, Cruz CD, Motoike SY (2010) Genetic diversity of a Brazilian wine grape germplasm collection based on morphoagronomic traits. Rev Bras Frutic 32:1164–1172. doi: 10.1590/S0100-29452010005000124 CrossRefGoogle Scholar
  17. Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795. doi: 10.1007/s00122-002-0951-z PubMedCrossRefGoogle Scholar
  18. Doligez A, Bertrand Y, Dias S, Grolier M, Ballester JF, Bouquet A, This P (2010) QTLs for fertility in table grape (Vitis vinifera L.) Tree Genet Genomes 6:413–422. doi: 10.1007/s11295-009-0259-0
  19. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99. doi: 10.1051/agro:2004057 CrossRefGoogle Scholar
  20. Duchêne E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41:193–204. doi: 10.3354/cr00850 CrossRefGoogle Scholar
  21. Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2011) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 123. doi: 10.1007/s00122-011-1734-1
  22. Eibach R (1990) Investigations about the influence of some physiological and phenological characteristics on quality and their heredity. In: Proceedings of the 5th Symposium on grape genetics and breeding, St Martin/Pfalz, 12–16 Sep 1989. Vitis special issue 149–158Google Scholar
  23. Fanizza G, Lamaj F, Costantini L, Chaabane R (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664. doi: 10.1007/s00122-005-2016-6 PubMedCrossRefGoogle Scholar
  24. Fernandez L, Romieu C, Moing A, Bouquet A, Maucourt M, Thomas MR, Torregrosa L (2006) The grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Physiol 140:537–547. doi: 10.1104/pp.105.067488 PubMedCrossRefGoogle Scholar
  25. Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515. doi: 10.1007/s00122-003-1445-3 PubMedCrossRefGoogle Scholar
  26. Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139. doi: 10.1534/genetics.109.103929 PubMedCrossRefGoogle Scholar
  27. Gawel R, Ewart A, Cirami R (2000) Effect of rootstock on must and wine composition and the sensory properties of Cabernet Sauvignon grown at Langhorne Creek, South Australia. Austr NZ Wine Ind J 15:67–73Google Scholar
  28. Hale CR (1977) Relation between potassium and the malate and tartrate contents of grape berries. Vitis 16:9–19Google Scholar
  29. Howell GS (2001) Sustainable grape productivity and the growth-yield relationship: a review. Am J Enol Vitic 52:165–174Google Scholar
  30. Ibáñez J, de Andrés MT, Molino A, Borrego J (2003) Genetic study of key Spanish grapevine varieties using microsatellite analysis. Am J Enol Vitic 54:22–30Google Scholar
  31. Jackson RS (2008) Wine science principles and applications, 3rd edn. Elsevier, Academic Press, San DiegoGoogle Scholar
  32. Jones GV, Davis RE (2000) Climate influence on grapevine phenology, grape composition, and wine production and quality for Bordeaux France. Am J Enol Vitic 51:249–261Google Scholar
  33. Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343. doi: 10.1007/s10584-005-4704-2 CrossRefGoogle Scholar
  34. Keller M (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res 16:56–69. doi: 10.1111/j.1755-0238.2009.00077.x CrossRefGoogle Scholar
  35. Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis lambruscana) regulate anthocyanin biosynthesis. Planta 215:924–933. doi: 10.1007/s00425-002-0830-5 PubMedCrossRefGoogle Scholar
  36. Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin colour. Science 304:982–982. doi: 10.1126/science.1095011 Google Scholar
  37. Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959. doi: 10.1007/s001220050976 CrossRefGoogle Scholar
  38. Liang Z, Yang C, Yang J, Wu B, Wang L, Cheng J, Li S (2009) Inheritance of anthocyanins in berries of Vitis vinifera grapes. Euphytica 167:113–125. doi: 10.1007/s10681-008-9868-1 CrossRefGoogle Scholar
  39. Lijavetzky D, Ruiz-García L, Cabezas JA, de Andrés MT, Bravo G, Ibáñez A, Carreño J, Cabello F, Ibáñez J, Martínez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276:427–435. doi: 10.1007/s00438-006-0149-1 PubMedCrossRefGoogle Scholar
  40. Liu HF, Wu BH, Fan PG, Xu HY, Li SH (2007) Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica 153:99–107. doi: 10.1007/s10681-006-9246-9 CrossRefGoogle Scholar
  41. Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339. doi: 10.1016/B978-012730055-9/50029-X PubMedCrossRefGoogle Scholar
  42. Martínez-Zapater JM, Carmona MJ, Díaz-Riquelme J, Fernández L, Lijavetzky D (2009) Grapevine genetics after the genome sequence: challenges and limitations. Aust J Grape Wine Res 16:33–46. doi: 10.1111/j.1755-0238.2009.00073.x CrossRefGoogle Scholar
  43. Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83–97. doi: 10.1186/1471-2229-8-83 PubMedCrossRefGoogle Scholar
  44. Mejía N, Gebauer M, Muñoz L, Hewstone N, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. Am J Enol Vitic 58:499–507Google Scholar
  45. Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945. doi: 10.1093/jxb/erm055 PubMedCrossRefGoogle Scholar
  46. Morris JR, Main GL, Oswald OL (2004) Flower cluster and shoot thinning for crop control in French-American hybrid grapes. Am J Enol Vitic 55:423–426Google Scholar
  47. Mpelasoka BS, Schachtman DP, Treeby MT, Thomas MR (2003) A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust J Grape Wine Res 9:154–168. doi: 10.1111/j.1755-0238.2003.tb00265.x CrossRefGoogle Scholar
  48. Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, CambridgeGoogle Scholar
  49. OIV (2009) Edition of the OIV descriptor list for grape varieties and Vitis species. 2nd edn. ParisGoogle Scholar
  50. Ollat N, Diakou-Verdin P, Carde JP, Barrieu F, Gaudillère JP, Moing A (2002) Grape berry development: a review. J Int Sci Vigne Vin 36:109–131Google Scholar
  51. Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38:1–15. doi: 10.3354/cr00759 CrossRefGoogle Scholar
  52. Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and sex on an extended genetic map of Vitis rupestris x V arizonica. Theor Appl Genet 113:1317–1329. doi: 10.1007/s00122-006-0385-0 PubMedCrossRefGoogle Scholar
  53. Romero P, Fernández-Fernández JI, Martinez-Cutillas A (2010) Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Am J Enol Vitic 61:300–312Google Scholar
  54. Romero-Cascales I, Ortega-Regules A, López-Roca JM, Fernández-Fernández JI, Gómez-Plaza E (2005) Differences in anthocyanin extractability from grapes to wines according to variety. Am J Enol Vitic 56:212–219Google Scholar
  55. Saint-Cricq N, Vivas N, Glories Y (1998) Maturité phénolique: définition et contrôle. Rev Fr Oenol 173:22–25Google Scholar
  56. Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando MS, Velasco R (2008) A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Genet 116:1129–1143. doi: 10.1007/s00122-008-0741-3 PubMedCrossRefGoogle Scholar
  57. Sato A, Yamada M, Iwanami H, Hirakawa N (2000) Optimal spatial and temporal measurement repetition for reducing environmental variation of berry traits in grape breeding. Sci Hortic 85:75–83. doi: 10.1016/S0304-4238(99)00144-2 CrossRefGoogle Scholar
  58. Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:2–12. doi: 10.1111/j.1755-0238.2000.tb00156.x CrossRefGoogle Scholar
  59. Shiraishi M, Fujishima H, Chijiwa H (2008) Tetraploid sucrose-accumulating grapevines. Vitis 47:191–192Google Scholar
  60. Shiraishi M, Fujishima H, Chijiwa H (2010) Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica 174:1–13. doi: 10.1007/s10681-009-0084-4 CrossRefGoogle Scholar
  61. Soar CJ, Sadras VO, Petrie PR (2008) Climate drivers of red wine quality in four contrasting Australian wine regions. Aust J Grape Wine Res 14:78–90. doi: 10.1111/j.1755-0238.2008.00011.x CrossRefGoogle Scholar
  62. Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755. doi: 10.1007/BF00029856 PubMedCrossRefGoogle Scholar
  63. Spayd SE, Tarara JM, Mee DL, Ferguson JC (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Vitic 53:171–182Google Scholar
  64. This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458. doi: 10.1007/s00122-004-1760-3 PubMedCrossRefGoogle Scholar
  65. Vail ME, Marois JJ (1991) Grape cluster architecture and susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191. doi: 10.1094/Phyto-81-188 CrossRefGoogle Scholar
  66. Walker A, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785. doi: 10.1111/j.1365-313X.2006.02997.x PubMedCrossRefGoogle Scholar
  67. Wei X, Sykes SR, Clingeleffer PR (2002) An investigation to estimate genetic parameters in CSIRO’s table grape breeding program 2. Quality characteristics. Euphytica 128:343–351. doi: 10.1023/A:1021288618316 CrossRefGoogle Scholar
  68. Welter LJ, Grando MS, Zyprian E (2011) Basics of grapevine genetic analysis. In: Kole C (ed) Genetics, Genomics, and Breeding of Grapes, 1st edn. Science Publishers, New Hampshire, pp 137–159. doi: 10.1201/b10948-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Almudena Bayo-Canha
    • 1
  • José Ignacio Fernández-Fernández
    • 2
  • Adrian Martínez-Cutillas
    • 2
  • Leonor Ruiz-García
    • 1
  1. 1.Departamento de Biotecnología y Protección de CultivosIMIDA (Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario)La Alberca, MurciaSpain
  2. 2.Departamento de Viticultura y EnologíaIMIDA (Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario)La Alberca, MurciaSpain

Personalised recommendations