Skip to main content
Log in

Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The aim of this work was to study the phenotypic segregation of different agronomic and fruit quality traits, and their relationships, in Monastrell × Syrah wine grape progeny. Twenty-two agronomic traits were evaluated and compared for three consecutive years in this progeny. The results show the phenotypic diversity existing in a cross between two different wine grape cultivars. Most of the phenological, productive, morphological, and enological parameters evaluated displayed continuous variation within the progeny, suggesting a polygenic inheritance. Some correlations between traits were detected by the Spearman correlation test, although high coefficients were not found for most of them. Cluster analysis of the progeny grouped the hybrids based on criteria with significance for wine grape breeding. Also, we investigated the relationship between the skin color and total content of anthocyanins with the VvmybA genotype, using the CAPS (Cleaved Amplified Polymorphic Sequence) marker 20D18CB9. The results show that hybrids with two copies of the functional color allele tend to have increased anthocyanins content. Based on this study, 14 genotypes were pre-selected from the breeding population for additional quality studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azuma A, Kobayashi S, Mitani N, Shiraishi M, Yamada M, Ueno T, Kono A, Yakushiji H, Koshita Y (2008) Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin. Theor Appl Genet 117:1009–1019. doi:10.1007/s00122-008-0840-1

    Article  PubMed  CAS  Google Scholar 

  • Azuma A, Kobayashi S, Goto-Yamamoto N, Shiraishi M, Mitani N, Yakushiji H, Koshita Y (2009) Color recovery in berries of grape (Vitis vinifera L.) ‘Benitaka’, a bud sport of ‘Italia’, is caused by a novel allele at the VvmybA1 locus. Plant Sci 176:470–478. doi:10.1016/j.plantsci.2008.12.015

    Article  CAS  Google Scholar 

  • Baggiolini M (1952) Les stades repères dans le developpement annuel de la vigne et leur utilisation pratique. Rev Romande Agric Vitic Arbor 8:4–6

    Google Scholar 

  • Bohner J, Bangerth F (1988) Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in fruit size. Physiol Plant 72:316–320. doi:10.1111/j.1399-3054.1988.tb05839.x

    Article  CAS  Google Scholar 

  • Boss PK, Davies C, Robinson SP (1996) Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv. Shiraz grape berries and the implications for pathway regulation. Plant Physiol 111:1059–1066. doi:10.1104/pp.111.4.1059

    PubMed  CAS  Google Scholar 

  • Boulton R (1980a) The relationships between total acidity, titratable acidity and pH in wine. Am J Enol Vitic 31:76–80

    CAS  Google Scholar 

  • Boulton R (1980b) The general relationship between potassium, sodium, and pH in grape juice and wine. Am J Enol Vitic 31:182–186

    CAS  Google Scholar 

  • Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi:10.1029/2006JD008249

    Article  Google Scholar 

  • Cabezas JA, Cervera MT, Ruiz-García L, Carreño J, Martínez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585. doi:10.1139/G08-116

    Article  PubMed  CAS  Google Scholar 

  • Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food (Global Science Books) 1:1–22

    Google Scholar 

  • Coombe BG (1988) Grapevine phenology. In: Coombe BG, Dry P (eds) Viticulture. Chap. 7, vol 1. Winetitles Adelaide, SA, pp 139–153

    Google Scholar 

  • Coombe BG, Hale RC (1973) The hormone content of ripening grape berries and the effects of growth substance treatments. Plant Physiol 51:629–634. doi:10.1104/pp.51.4.629

    Article  PubMed  CAS  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38–54. doi:10.1186/1471-2229-8-38

    Article  PubMed  Google Scholar 

  • Costantini L, Moreira FM, Zypriani E, Martínez-Zapater JM, Grando MS (2009) Molecular maps, QTL mapping and association mapping in grapevine. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology & biotechnology, 2nd edn. Kluwer Academis Publishers, Dordrecht, pp 535–564. doi:10.1007/978-90-481-2305-6_20

  • Dalbò MA, Ye GN, Weeden NF, Wilcox WF, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340. doi:10.1139/gen-43-2-333

    Article  PubMed  Google Scholar 

  • de Leão PC S, Cruz CD, Motoike SY (2010) Genetic diversity of a Brazilian wine grape germplasm collection based on morphoagronomic traits. Rev Bras Frutic 32:1164–1172. doi:10.1590/S0100-29452010005000124

    Article  Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795. doi:10.1007/s00122-002-0951-z

    Article  PubMed  CAS  Google Scholar 

  • Doligez A, Bertrand Y, Dias S, Grolier M, Ballester JF, Bouquet A, This P (2010) QTLs for fertility in table grape (Vitis vinifera L.) Tree Genet Genomes 6:413–422. doi:10.1007/s11295-009-0259-0

  • Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99. doi:10.1051/agro:2004057

    Article  Google Scholar 

  • Duchêne E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41:193–204. doi:10.3354/cr00850

    Article  Google Scholar 

  • Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2011) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 123. doi:10.1007/s00122-011-1734-1

  • Eibach R (1990) Investigations about the influence of some physiological and phenological characteristics on quality and their heredity. In: Proceedings of the 5th Symposium on grape genetics and breeding, St Martin/Pfalz, 12–16 Sep 1989. Vitis special issue 149–158

  • Fanizza G, Lamaj F, Costantini L, Chaabane R (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664. doi:10.1007/s00122-005-2016-6

    Article  PubMed  CAS  Google Scholar 

  • Fernandez L, Romieu C, Moing A, Bouquet A, Maucourt M, Thomas MR, Torregrosa L (2006) The grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and nonfleshy fruit. Plant Physiol 140:537–547. doi:10.1104/pp.105.067488

    Article  PubMed  CAS  Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Topfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515. doi:10.1007/s00122-003-1445-3

    Article  PubMed  CAS  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139. doi:10.1534/genetics.109.103929

    Article  PubMed  CAS  Google Scholar 

  • Gawel R, Ewart A, Cirami R (2000) Effect of rootstock on must and wine composition and the sensory properties of Cabernet Sauvignon grown at Langhorne Creek, South Australia. Austr NZ Wine Ind J 15:67–73

    Google Scholar 

  • Hale CR (1977) Relation between potassium and the malate and tartrate contents of grape berries. Vitis 16:9–19

    CAS  Google Scholar 

  • Howell GS (2001) Sustainable grape productivity and the growth-yield relationship: a review. Am J Enol Vitic 52:165–174

    Google Scholar 

  • Ibáñez J, de Andrés MT, Molino A, Borrego J (2003) Genetic study of key Spanish grapevine varieties using microsatellite analysis. Am J Enol Vitic 54:22–30

    Google Scholar 

  • Jackson RS (2008) Wine science principles and applications, 3rd edn. Elsevier, Academic Press, San Diego

    Google Scholar 

  • Jones GV, Davis RE (2000) Climate influence on grapevine phenology, grape composition, and wine production and quality for Bordeaux France. Am J Enol Vitic 51:249–261

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343. doi:10.1007/s10584-005-4704-2

    Article  Google Scholar 

  • Keller M (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape Wine Res 16:56–69. doi:10.1111/j.1755-0238.2009.00077.x

    Article  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis lambruscana) regulate anthocyanin biosynthesis. Planta 215:924–933. doi:10.1007/s00425-002-0830-5

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin colour. Science 304:982–982. doi:10.1126/science.1095011

    Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959. doi:10.1007/s001220050976

    Article  CAS  Google Scholar 

  • Liang Z, Yang C, Yang J, Wu B, Wang L, Cheng J, Li S (2009) Inheritance of anthocyanins in berries of Vitis vinifera grapes. Euphytica 167:113–125. doi:10.1007/s10681-008-9868-1

    Article  CAS  Google Scholar 

  • Lijavetzky D, Ruiz-García L, Cabezas JA, de Andrés MT, Bravo G, Ibáñez A, Carreño J, Cabello F, Ibáñez J, Martínez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genomics 276:427–435. doi:10.1007/s00438-006-0149-1

    Article  PubMed  CAS  Google Scholar 

  • Liu HF, Wu BH, Fan PG, Xu HY, Li SH (2007) Inheritance of sugars and acids in berries of grape (Vitis vinifera L.). Euphytica 153:99–107. doi:10.1007/s10681-006-9246-9

    Article  CAS  Google Scholar 

  • Mackay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339. doi:10.1016/B978-012730055-9/50029-X

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Zapater JM, Carmona MJ, Díaz-Riquelme J, Fernández L, Lijavetzky D (2009) Grapevine genetics after the genome sequence: challenges and limitations. Aust J Grape Wine Res 16:33–46. doi:10.1111/j.1755-0238.2009.00073.x

    Article  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83–97. doi:10.1186/1471-2229-8-83

    Article  PubMed  Google Scholar 

  • Mejía N, Gebauer M, Muñoz L, Hewstone N, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening date in a seedless x seedless table grape progeny. Am J Enol Vitic 58:499–507

    Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945. doi:10.1093/jxb/erm055

    Article  PubMed  CAS  Google Scholar 

  • Morris JR, Main GL, Oswald OL (2004) Flower cluster and shoot thinning for crop control in French-American hybrid grapes. Am J Enol Vitic 55:423–426

    Google Scholar 

  • Mpelasoka BS, Schachtman DP, Treeby MT, Thomas MR (2003) A review of potassium nutrition in grapevines with special emphasis on berry accumulation. Aust J Grape Wine Res 9:154–168. doi:10.1111/j.1755-0238.2003.tb00265.x

    Article  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Cambridge

    Google Scholar 

  • OIV (2009) Edition of the OIV descriptor list for grape varieties and Vitis species. 2nd edn. Paris

  • Ollat N, Diakou-Verdin P, Carde JP, Barrieu F, Gaudillère JP, Moing A (2002) Grape berry development: a review. J Int Sci Vigne Vin 36:109–131

    CAS  Google Scholar 

  • Ramos MC, Jones GV, Martínez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38:1–15. doi:10.3354/cr00759

    Article  Google Scholar 

  • Riaz S, Krivanek AF, Xu K, Walker MA (2006) Refined mapping of the Pierce’s disease resistance locus, PdR1, and sex on an extended genetic map of Vitis rupestris x V arizonica. Theor Appl Genet 113:1317–1329. doi:10.1007/s00122-006-0385-0

    Article  PubMed  CAS  Google Scholar 

  • Romero P, Fernández-Fernández JI, Martinez-Cutillas A (2010) Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Am J Enol Vitic 61:300–312

    Google Scholar 

  • Romero-Cascales I, Ortega-Regules A, López-Roca JM, Fernández-Fernández JI, Gómez-Plaza E (2005) Differences in anthocyanin extractability from grapes to wines according to variety. Am J Enol Vitic 56:212–219

    CAS  Google Scholar 

  • Saint-Cricq N, Vivas N, Glories Y (1998) Maturité phénolique: définition et contrôle. Rev Fr Oenol 173:22–25

    Google Scholar 

  • Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando MS, Velasco R (2008) A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Genet 116:1129–1143. doi:10.1007/s00122-008-0741-3

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Yamada M, Iwanami H, Hirakawa N (2000) Optimal spatial and temporal measurement repetition for reducing environmental variation of berry traits in grape breeding. Sci Hortic 85:75–83. doi:10.1016/S0304-4238(99)00144-2

    Article  Google Scholar 

  • Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:2–12. doi:10.1111/j.1755-0238.2000.tb00156.x

    Article  CAS  Google Scholar 

  • Shiraishi M, Fujishima H, Chijiwa H (2008) Tetraploid sucrose-accumulating grapevines. Vitis 47:191–192

    CAS  Google Scholar 

  • Shiraishi M, Fujishima H, Chijiwa H (2010) Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica 174:1–13. doi:10.1007/s10681-009-0084-4

    Article  CAS  Google Scholar 

  • Soar CJ, Sadras VO, Petrie PR (2008) Climate drivers of red wine quality in four contrasting Australian wine regions. Aust J Grape Wine Res 14:78–90. doi:10.1111/j.1755-0238.2008.00011.x

    Article  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755. doi:10.1007/BF00029856

    Article  PubMed  CAS  Google Scholar 

  • Spayd SE, Tarara JM, Mee DL, Ferguson JC (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Vitic 53:171–182

    CAS  Google Scholar 

  • This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibáñez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458. doi:10.1007/s00122-004-1760-3

    Article  PubMed  CAS  Google Scholar 

  • Vail ME, Marois JJ (1991) Grape cluster architecture and susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191. doi:10.1094/Phyto-81-188

    Article  Google Scholar 

  • Walker A, Lee E, Bogs J, McDavid DAJ, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785. doi:10.1111/j.1365-313X.2006.02997.x

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Sykes SR, Clingeleffer PR (2002) An investigation to estimate genetic parameters in CSIRO’s table grape breeding program 2. Quality characteristics. Euphytica 128:343–351. doi:10.1023/A:1021288618316

    Article  CAS  Google Scholar 

  • Welter LJ, Grando MS, Zyprian E (2011) Basics of grapevine genetic analysis. In: Kole C (ed) Genetics, Genomics, and Breeding of Grapes, 1st edn. Science Publishers, New Hampshire, pp 137–159. doi:10.1201/b10948-7

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors wish to thank A. Fuentes for her technical assistance, S. Fernández for progeny management, and D.J. Walker for review the quality of the English. This research was funded by the 2007-00043-INIA (Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria) project, co-financed by the European Regional Development Fund. L. Ruiz-García worked previously under an INIA contract co-financed by the European Social Fund, and currently works under a contract co-financed by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Ruiz-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayo-Canha, A., Fernández-Fernández, J.I., Martínez-Cutillas, A. et al. Phenotypic segregation and relationships of agronomic traits in Monastrell × Syrah wine grape progeny. Euphytica 186, 393–407 (2012). https://doi.org/10.1007/s10681-012-0622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0622-3

Keywords

Navigation