, Volume 185, Issue 3, pp 407–417 | Cite as

Effect of recombination in the maize breeding population with exotic germplasm on the yield stability

  • Tomislav Živanović
  • Gordana Branković
  • Miroslav Zorić
  • Gordana Šurlan Momirović
  • Snežana Janković
  • Sanja Vasiljević
  • Jovan Pavlov


A little knowledge exists about the probability that recombination in the parental maize populations will enhance the chances to select more stable genotypes. The synthetic parent maize population ((1601/5 × ZPL913)F2 = R0) with 25% of exotic germplasm was used to assess: (i) genotype × environment interaction and estimate stability of genotypes using nonparametric statistics; (ii) the effect of three (R3) and five (R5) gene recombination cycles on yield stability of genotypes; (iii) relationship among different nonparametric stability measures. The increase of mean grain yield was significant (P < 0.01) in the R3 and R5 in comparison to the R0, while it was not significant between R3 and R5. Analysis of variance showed significant (P < 0.01) effects of environments, families per set, environment × set interaction, family × environment interaction per set on grain yield. The non-significant noncrossover and significant crossover (P < 0.01) G × (E) interactions were found according to Bredenkamp procedures and van der Laan-de Kroon test, respectively. The significant (P < 0.01) differences in stability were observed between R0-set 3 and R5-set 3 determined by \( S_{i}^{(3)} \), R3-set 1 and R5-set 1 determined by \( S_{i}^{(3)} \)(P < 0.05), and R0-set 3 and R5-set 3 determined by \( S_{i}^{(6)} \)(P < 0.05). The significant parameters were those which take into account yield and stability so the differences could be due to differences in yield rather than stability. Findings can help breeders to assume the most optimum number of supplementary gene recombination to achieve satisfactory yield mean and yield stability of maize genotypes originating from breeding populations.


Maize Recombination Nonparametric stability analysis 


  1. Albrecht B, Dudley JW (1987) Evaluation of four maize populations containing different proportions of exotic germplasm. Crop Sci 27:480–486CrossRefGoogle Scholar
  2. Becker HC, Léon J (1988) Stability analysis in Plant Breed. Plant Breeding 101:1–23CrossRefGoogle Scholar
  3. Bredenkamp J (1974) Nonparametrische Prüfung von Wechselwirkungen. Psychologische Beiträge 16:398–416Google Scholar
  4. Bridges WC, Gardner CO (1987) Foundation populations for adapted by exotic crosses. Crop Sci 27:501–506CrossRefGoogle Scholar
  5. Carena MJ, Bergman G, Riveland N, Eriksmoen E, Halvorson M (2009) Breeding maize for higher yield and quality under drought stress. Maydica 54:287–296Google Scholar
  6. Cochran WG, Cox MG (1957) Experimental designs. Wiley, New YorkGoogle Scholar
  7. Covarrubias-Prieto J, Hallauer AR, Lamkey KR (1989) Intermating F2 populations of maize. Genetika-Belgrade 21:111–126Google Scholar
  8. Crossa J (1989) Theoretical considerations for the introgression of exotic germplasm into adapted maize populations. Maydica 34:53–62Google Scholar
  9. Crossa J, Gardner CO (1987) Introgression of an exotic germplasm for improving an adapted maize population. Crop Sci 27:187–190CrossRefGoogle Scholar
  10. De Kroon JPM, van der Laan P (1981) Distribution free test procedures in two-way layouts; a concept of rank-interaction. Statistica Nederlandica 35:189–213CrossRefGoogle Scholar
  11. Duarte JB, de Zimmermmann MJO (1995) Correlation among yield stability parameters in common bean. Crop Sci 35:905–912CrossRefGoogle Scholar
  12. Fasoula DA, Fasoula VA (1997) Competitive ability and plant breeding. Plant Breed Rev 14:89–138Google Scholar
  13. Giauffret C, Lothrop J, Dorvillez D, Gouernard B, Derieux M (2000) Genotype × environment interactions in maize hybrids from temperate or highland tropical origin. Crop Sci 40:1004–1012CrossRefGoogle Scholar
  14. Goodman MM, Carson ML (2000) Reality versus myth: corn breeding, exotics, and genetic engineering. Ann Corn Sorghum Res Conf Proc 55:140–172Google Scholar
  15. Gouesnard B, Sanou J, Panouillé A, Bourion V, Boyat A (1996) Evaluation of agronomic traits and analysis of exotic germplasm polymorphism in adapted × exotic maize crosses. Theor Appl Genet 92:368–374CrossRefGoogle Scholar
  16. Hallauer AR (1978) Potential of exotic germplasm for maize improvement. In: Walden WL (ed) Maize genetics and breeding. Wiley, New York, pp 229–247Google Scholar
  17. Hallauer AR, Carena MJ, Miranda Filho JB (2010) Quantitative genetics in maize breeding. Springer, New YorkGoogle Scholar
  18. Holland JB (2004) Breeding: incorporation of exotic germplasm. encyclopedia of plant and crop science. doi:  10.1081/E-EPCS 120010536
  19. Holland JB, Goodman MM (1995) Combining ability of tropical maize accessions with US germplasm. Crop Sci 35:767–773CrossRefGoogle Scholar
  20. Hühn M (1979) Beiträge zur Erfassung der phänotypischen Stabilität. I. Vorschlag einiger auf Ranginformationen beruhenden Stabilitätsparameter. EDV in Medizin und Biologie 10: 112–117Google Scholar
  21. Hühn M (1990a) Nonparametric measures of phenotypic stability. Part 1: Theory. Euphytica 47:189–194Google Scholar
  22. Hühn M (1990b) Nonparametric measures of phenotypic stability. Part 2: Applications. Euphytica 47:195–201Google Scholar
  23. Hühn M (1996) Nonparametric analysis of genotype x environment interaction by ranks. In: Kang MS, Gauch HG (eds) Genotype by environment interaction. CRC Press, Boca Raton, pp 235–271CrossRefGoogle Scholar
  24. Hühn M, Nassar R (1989) On tests of significance for nonparametric measures of phenotypic stability. Biometrics 45:997–1000CrossRefGoogle Scholar
  25. Lamkey KR, Hallauer AR (1987)  Heritability estimated from recurrent selection experiments in maize. Maydica 32:61–78Google Scholar
  26. Lamkey KR, Schnicker BS, Melchinger AE (1995) Epistasis in an elite maize hybrid and choice of generation for inbred line development. Crop Sci 35:1272–1281CrossRefGoogle Scholar
  27. Lee EA, Doerksen TK, Kannenberg LW (2003) Genetic components of yield stability in maize breeding populations. Crop Sci 43:2018–2027CrossRefGoogle Scholar
  28. Melchinger AE, Geiger HH, Utz HF, Schnell FW (2003) Effect of recombination in the parent populations on the means and combining ability variances in hybrid populations of maize (Zea mays L.). Theor Appl Genet 106:332–340PubMedGoogle Scholar
  29. Michelini LA, Hallauer AR (1993) Evaluation of an exotic and adapted maize germplasm crosses. Maydica 38:275–282Google Scholar
  30. Miranda GV (1993) Comparacão de aveliacão da adaptabilidade e estabilidade de comportamentomde cultivares: exemplo com a cultura do feijão (Phaseolus vulgaris L.). Master’s thesis, UFV, Vicosa, MGGoogle Scholar
  31. Nassar R, Hühn M (1987) Studies on estimation of phenotypic stability: test of significance for nonparametric measures of phenotypic stability. Biometrics 43:45–53CrossRefGoogle Scholar
  32. Pollak LM (1993) Evaluation of Caribbean maize accessions in Puerto Rico. Trop Agric 70:8–12Google Scholar
  33. Sabaghnia N, Dehghani H, Sabaghpour SH (2006) Nonparametric methods for interpreting genotype x environment interaction of Lentil genotypes. Crop Sci 46:1100–1106CrossRefGoogle Scholar
  34. Sandoya G, Butrón A, Alvarez A, Ordás A, Malvar RA (2008) Direct response of a maize synthetic to recurrent selection for resistance to stem borers. Crop Sci 48:113–118CrossRefGoogle Scholar
  35. Sandoya G, Malvar RA, Santiago R, Alvarez A, Revilla P, Butrón A (2010) Effects of selection for resistance to Sesamia nonagrioides on maize yield, performance and stability under infestation with Sesamia nonagrioides and Ostrinia nubilalis in Spain. Ann Appl Biol 156:377–386CrossRefGoogle Scholar
  36. Scapim CA, Oliveira VR, Braccini AL, Cruz CD, Andrade CAB, Vidigal MCG (2000) Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart & Russell, Lin & Binns and Huehn models. Genet Mol Biol 23:387–393CrossRefGoogle Scholar
  37. Segherloo AE, Sabaghpour SH, Dehghani H, Kamrani M (2008) Nonparametric measures of phenotypic stability in chickpea genotypes (Cicer arietinum L.). Euphytica 162:221–229CrossRefGoogle Scholar
  38. Statsoft Inc (2010) STATISTICA (data analysis software system) version 10.
  39. Truberg B, Hühn M (2000) Contributions to the analysis of genotype × environments interactions: comparison of different parametric and non-parametric tests for interactions with emphasis on crossover interaction. J Agronomy Crop Sci 185:267–274CrossRefGoogle Scholar
  40. Vasic NJ, Ivanovic MR, Brkic IJ, Bekavac GF, Zdunic ZI, Jambrovic AS (2006) Evaluation of maize hybrids containing different proportion of NC298 tropical germplasm line in their male parents. Maydica 51:79–88Google Scholar
  41. Winkler CR, Jensen NM, Cooper M, Podlich DW, Smith OS (2003) On the determination of recombination rates in intermated recombinant inbred populations. Genetics 164:741–745PubMedGoogle Scholar
  42. Živanović T, Đorđević R, Dražić S, Sečanski M, Kostić M (2007) Effects of recombinations on variability and heritability of traits in maize populations with exotic germplasm. Biotechnol Biotechnol Equip 2:229–234Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Tomislav Živanović
    • 1
  • Gordana Branković
    • 1
  • Miroslav Zorić
    • 2
  • Gordana Šurlan Momirović
    • 1
  • Snežana Janković
    • 3
  • Sanja Vasiljević
    • 4
  • Jovan Pavlov
    • 5
  1. 1.Department of Genetics and Plant BreedingUniversity of Belgrade, Faculty of AgricultureBelgradeSerbia
  2. 2.University of Novi Sad, Faculty of TechnologyNovi SadSerbia
  3. 3.Institute of Science Application in AgricultureBelgradeSerbia
  4. 4.Institute of Field and Vegetable CropsNovi SadSerbia
  5. 5.Maize Research Institute “Zemun Polje”BelgradeSerbia

Personalised recommendations