Skip to main content
Log in

Phenotypic evaluation of interspecific recombinant inbred lines (RILs) of Phaseolus species for aluminium resistance and shoot and root growth response to aluminium–toxic acid soil

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Aluminium (Al) toxicity limits common bean productivity in acid soil regions of the tropics. To improve Al resistance of common bean, Al-sensitive Phaseolus vulgaris (SER16) was crossed to Al-resistant P. coccineus (G35346-3Q) to create 94 F5:6 recombinant inbred lines (RILs) of the pedigree SER16 × (SER16 × G35346-3Q). RILs were characterized for resistance to Al in a hydroponic system with 0 and 20 μM Al in solution, and for shoot and root growth response to Al-toxic infertile acid soil in 75 cm long soil cylinder system using an oxisol of low Al- (12.5%; pH 4.6; fertilized) and high Al-saturation (77%; pH 4.1; unfertilized). G35346-3Q increased its taproot elongation rate by 3.5% between 24 and 48 h under 20 μM Al in solution, while the best RIL, Andean genotype ICA Quimbaya, and sensitive genotype VAX1 expressed reductions of 2.6, 12.5, and 69.5%, respectively. In the acid soil treatment the correlation between leaf area and total root length was highly significant under high Al saturation (r = 0.70***). Genotypes that were Al resistant in the hydroponic system were not necessarily tolerant to Al-toxic acid soil conditions based on shoot and root growth responses. Phenotypic evaluation using both systems allows the identification of genotypes with Al resistance combined with acid soil adaptation. Two genotypes (ALB88 and ALB91) emerged as lines with multiple traits. Results suggest that inheritance of Al resistance and acid soil tolerance in G35346-3Q is complex. Results from this work will be useful for identification of molecular markers for Al resistance in Phaseolus species and to improve acid soil adaptation in common bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HAl:

High aluminium soil saturation

LA:

Leaf area

LAl:

Low aluminium soil saturation

MRD:

Mean root diameter

NRT:

Number of root tips

PC:

Percent of control

RDW:

Root dry weight

R:S:

Root to shoot ratio

SDW:

Shoot dry weight

SRL:

Specific root length

TRER24h:

Tap root elongation rate between 0–24 h

TRER24-48h:

Tap root elongation rate between 24–48 h

TRER48h:

Tap root elongation rate between 0–48 h

TRL:

Total root length

VRD34d:

Visual rooting depth at 34 days

References

  • Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Article  Google Scholar 

  • Bennet RJ, Breen CM, Fey MV (1991) The aluminum signal: new dimensions of aluminum tolerance. Plant Soil 34:153–166

    Google Scholar 

  • Bianchi-Hall CM, Carter TE Jr, Bailey MA, Mian MAR, Rufty TW, Ashley DA, Boerma HR, Arellano C, Hussey RS, Parrott WA (2000) Aluminum tolerance associated with quantitative trait loci derived from soybean PI 416937 in hydroponics. Crop Sci 40:538–545

    Article  CAS  Google Scholar 

  • Blair MW, López-Marín HD, Rao IM (2009) Identification of aluminum resistant Andean genotypes of common bean (Phaseolus vulgais L.). Braz J Plant Physiol 21(4):291–300

    Article  Google Scholar 

  • Box JE (1996) Modern methods for root investigations. In: Waisel Y et al (eds) Plant roots: the hidden half. Marcel Dekker Inc., New York, pp 193–237

    Google Scholar 

  • Butare L, Rao I, Lepoivre P, Polania J, Cajiao C, Cuasquer J, Beebe S (2011) New genetic sources of resistance in the genus Phaseolus to individual and combined aluminium toxicity and progressive soil drying stresses. Euphytica 181(3):385–404

    Article  CAS  Google Scholar 

  • Campbell KAG, Carter TE Jr (1990) Aluminum tolerance in soybean: I. Genotypic correlation and repeatability of solution culture and greenhouse screening methods. Crop Sci 30:1049–1054

    Article  CAS  Google Scholar 

  • CIAT (2005) Project IP1: bean improvement for the tropics. Annual report, Cali, p 366

    Google Scholar 

  • CIAT (2007) Bean genomics for improved drought tolerance in Central America. Final report, Cali

    Google Scholar 

  • Clarkson DT (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29:309–315

    Google Scholar 

  • Clarkson DT (1991) Root architecture and site of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Inc., New York, pp 417–453

    Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.): II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Doncheva S, Amenós M, Poschenrieder C, Barceló J (2005) Root cell patterning: a primary target for aluminum toxicity in maize. J Exp Bot 56(414):1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Eisenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Article  Google Scholar 

  • Eticha D, Zahn M, Bremer M, Yang Z, Rangel AF, Rao IM, Horst WJ (2010) Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot 105:1119–1128

    Article  PubMed  CAS  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminium toxic soils. Comm Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (1991) A method to study rhizosphere processes in thin soil layers of different proximity to roots. Plant Soil 135:143–146

    Article  Google Scholar 

  • Gahoonia TS, Nielsen NE (1997) Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98:177–182

    Article  Google Scholar 

  • Goldman IL, Carter TE Jr, Patterson RP (1989) Differential genotypic response to drought stress and subsoil aluminum in soybean. Crop Sci 29:330–334

    Article  Google Scholar 

  • Hausler K, Rao IM, Schultze-Kraft R, late Marschner H (2006) Shoot and root growth of two tropical grasses, Brachiaria ruziziensis and B. dictyoneura as influenced by aluminum toxicity and phosphorus deficiency in a sandy loam Oxisol of the eastern plains of Colombia. Trop Grasslands 40:213–221

    Google Scholar 

  • Horst WJ, Klotz F (1990) Screening soybean for aluminum tolerance and adaptation to acid soils. In: El Bassan N (ed) Genetic aspects of plant mineral nutrition. Klumer Academic Publisher, Dordrecht, pp 355–360

    Chapter  Google Scholar 

  • Horst WJ, Asher CJ, Cakmak I, Szulkiewicz P, Wissemeier AH (1992) Short-term responses of soybean roots to aluminium. J Plant Physiol 140:174–178

    Article  CAS  Google Scholar 

  • Horst WJ, Püschel AK, Schmohl N (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 192:23–30

    Article  CAS  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review. Ann Bot 106:185–197

    Article  PubMed  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Kikui S, Sasaki T, Maekawa M, Miyao A, Hirochika H, Matsumoto H, Yamamoto Y (2005) Physiological and genetic analyses of aluminum tolerance in rice, focusing on root growth during germination. J Inorg Biochem 99:1837–1844

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminium resistance and toxicity. Plant Soil 274:175–195

    Article  CAS  Google Scholar 

  • Liu LP, Gan Y, Bueckert R, Van Rees K, Warkentin T (2010) Fine root distribution in oilseed and pulse crops. Crop Sci 50:222–226

    Article  Google Scholar 

  • López-Marín HD, Rao IM, Blair MW (2009) Quantitative trait loci for aluminum toxicity resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119:449–458

    Article  PubMed  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Manrique G, Rao I, Beebe S (2006) Identification of aluminum resistant common bean genotypes using a hydroponic screening method. Paper presented at the 18th World Congress of Soil Science, Philadelphia, 9–15 July 2006

  • Massot N, Llugany M, Poschenrieder C, Barcelo J (1999) Callose production as indicator of aluminum toxicity in bean cultivars. J Plant Nutr 22:1–10

    Article  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  PubMed  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    Article  CAS  Google Scholar 

  • Narasimhamoorthy B, Blancaflor EB, Bouton JH, Payton ME, Sledge MK (2007) A comparison of hydroponics, soil, and root staining methods for evaluation of aluminium tolerance in Medicago truncatula (Barel Medic) germplasm. Crop Sci 47:321–328

    Article  CAS  Google Scholar 

  • Nguyen VT, Nguyen BD, Sarkarung S, Martinez C, Paterson AH, Nguyen HT (2002) Mapping of genes controlling aluminum tolerance in rice: comparison of different genetic backgrounds. Mol Genet Genomics 267:772–780

    Article  PubMed  CAS  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    PubMed  CAS  Google Scholar 

  • Noble AD, Fey MV, Lea JD (1987) Performance of five soybean cultivars in relation to lime and phosphorus levels on an acid ultisol. S Afr J Plant Soil 4:140–142

    Google Scholar 

  • Pandey S, Ceballos H, Magnavaca R, Bahia Filho AFC, Duquevargas J, Vxinasco LE (1994) Genetics of tolerance to soil acidity in tropical maize. Crop Sci 34:1511–1514

    Article  Google Scholar 

  • Polanía J, Rao IM, Beebe S, García R (2009) Desarrollo y distribución de raices bajo estrés por sequía en frijol común (Phaseolus vulgaris L.) en un sistema de tubos con suelo. Agron Colombiana 27:25–32

    Google Scholar 

  • Rangel AF, Mobin M, Rao IM, Horst WJ (2005) Proton toxicity interferes with the screening of common bean (Phaseolus vulgaris L.) genotypes for aluminium resistance in nutrient solution. J Plant Nutr Soil Sci 168:607–616

    Article  CAS  Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J Exp Bot 58:3895–3904

    Article  PubMed  CAS  Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2009) Cellular distribution and binding state of aluminum in root apices of common bean (Phaseolus vulgaris L.) genotypes differing in aluminium resistance. Physiol Plant 135:162–173

    Article  PubMed  CAS  Google Scholar 

  • Rangel AF, Rao IM, Braun HP, Horst WJ (2010) Aluminum resistance in common bean (Phaseolus vulgaris L.) involves induction and maintenance of citrate exudation from root apices. Physiol Plant 138:176–190

    Article  PubMed  CAS  Google Scholar 

  • Rao IM, Zeigler RS, Vera R, Sarkarung S (1993) Selection and breeding for acid–soil tolerance in crops: upland rice and tropical forages as case studies. Bio Sci 43:454–465

    Google Scholar 

  • Raper CDJ, Osmond DL, Wann M, Weeks WW (1978) Interdependence of root and shoot activities in determining nitrogen uptake rate of roots. Bot Gaz 139:289–294

    Article  CAS  Google Scholar 

  • Rout GR, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21:3–21

    Article  Google Scholar 

  • Ryan P, Delhaize E (2010) The convergent evolution of aluminium resistance in plants exploits a convenient currency. Funct Plant Biol 37:275–284

    Article  CAS  Google Scholar 

  • Ryan PR, Kinraide TB, Kochian LV (1994) (Al3+–Ca2+ interactions in aluminum rhizotoxicity. I. Inhibition of root growth is not caused by reduction of calcium uptake. Planta 192:98–103

    CAS  Google Scholar 

  • Sapra VT, Mebrahtu T, Mugwira LM (1982) Soybean germplasm and cultivar aluminum tolerance in nutrient solution and Blanden clay loan soil. Agron J 74:687–690

    Article  Google Scholar 

  • Sartain JB, Kamprath EJ (1978) Aluminum tolerance of soybean cultivars based on root elongation in solution culture compared with growth in acid soil. Agron J 70:17–20

    Article  CAS  Google Scholar 

  • Shen H, Yan X, Cai K, Matsumoto H (2004) Differential Al resistance and citrate secretion in the tap and basal roots of common bean seedlings. Physiol Plant 121:595–603

    Article  CAS  Google Scholar 

  • Stass A, Kotur Z, Horst WJ (2007) Effect of boron on the expression of aluminum toxicity in Phaseolus vulgaris. Physiol Plant 131:283–290

    PubMed  CAS  Google Scholar 

  • Urrea-Gómez R, Ceballos H, Pandey S, Bahía Filho AFC, León LA (1996) A greenhouse screening technique for acid soil tolerance in maize. Agron J 88:806–812

    Article  Google Scholar 

  • Villagarcia MR, Carter TE Jr, Rufty TW, Niewoehner AS, Jennette MW, Arrellano C (2001) Genotypic ranking for aluminum tolerance of soybean roots grown in hydroponics and sand culture. Crop Sci 41:1499–1507

    Article  Google Scholar 

  • Wenzl P, Mancilla LI, Mayer JE, Albert R, Rao IM (2003) Simulating infertile acid soils with nutrient solutions and the effects on Brachiaria species. Soil Sci Soc Am J 67:1457–1469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Bundesministerium für Wirtschaftliche Zusammenarbeit und Entwicklung (BMZ) project (No. 05.7860.9-001.00) entitled “Fighting drought and aluminum toxicity: Integrating functional genomics, phenotypic screening and participatory evaluation with women and small-scale farmers to develop stress-resistant common bean and Brachiaria for the tropics” granted to CIAT as a restricted core project. We are very grateful to research support staff of CIAT bean program for their assistance in data collection and processing. We thank Jaumer Ricaurte and Dr. Andres Felipe Rangel for their contribution to screening for resistance to aluminium in hydroponic system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Beebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butare, L., Rao, I., Lepoivre, P. et al. Phenotypic evaluation of interspecific recombinant inbred lines (RILs) of Phaseolus species for aluminium resistance and shoot and root growth response to aluminium–toxic acid soil. Euphytica 186, 715–730 (2012). https://doi.org/10.1007/s10681-011-0564-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0564-1

Keywords

Navigation