Skip to main content
Log in

Gene expression analysis of four WIR1-like genes in floret tissues of European winter wheat after challenge with G. zeae

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) is a highly destructive disease of wheat and other cereals which causes serious mycotoxin contaminations of grain. A number of molecular mapping studies led to the detection of QTL with small to moderate effects on FHB resistance in European winter wheat. Genes involved in the defence reaction of these genotypes remain largely unknown. WIR1 (wheat induced resistance 1) genes have been shown to be upregulated in cereals during attack of various fungal pathogens; however, their role in resistance is ambiguous. In this study, the expression of three WIR1 genes and a gene with high sequence similarity to WIR1 was investigated in European winter wheat genotypes after inoculation with Giberella zeae. Floret tissues of four winter wheat genotypes (Dream, Lynx, G16-92, Hussar) were challenged with G. zeae conidia or water (control) and sampled six times during 0–96 h after inoculation. Quantitative real-time PCR showed that all four genes were highly upregulated in the resistant genotypes compared to the susceptible ones. WIR1b and a gene with sequence similarity to WIR1 genes mapped to chromosome 5DS in the G16-92/Hussar mapping population. Two genes annotated as WIR1a mapped in the interval of a FHB resistance QTL on chromosome 7BS in the Dream/Lynx mapping population. These could be considered possible candidate genes for quantitative FHB resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ansari KI, Walter S, Brennan JM, Lemmens M, Kessans S, McGahern A, Egan D, Doohan FM (2007) Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. Theor Appl Genet 114:927–937

    Article  PubMed  CAS  Google Scholar 

  • Babaeizad V, Imani J, Kogel K-H, Eichmann R, Hückelhoven R (2009) Over-expression of the cell death regulator BAX Inhibitor-1 in barley confers reduced or enhanced susceptibility to distinct fungal pathogens. Theor Appl Genet 118:455–463

    Article  PubMed  CAS  Google Scholar 

  • Bachem CWB, van der Hoeven RS, de Bruijn RS, Vreugendenhil P, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: Analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  PubMed  CAS  Google Scholar 

  • Behn A, Hartl L, Schweizer G, Wenzel G, Baumer M (2004) QTL mapping for resistance against non-parasitic leaf spots in a spring barley doubled haploid population. Theor Appl Genet 108:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P (2007) Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct Integr Genomics 7:69–77

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breeding 128:1–26

    Article  CAS  Google Scholar 

  • Bull J, Mauch F, Hertig C, Rebmann G, Dudler R (1992) Sequence and expression of a wheat gene that encodes a novel protein associated with pathogen defense. Mol Plant Microbe Interact 5:516–519

    Article  PubMed  CAS  Google Scholar 

  • Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM, Gardiner DM, Munn AL, Kazan K (2008) The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defense responses in wheat. Mol Plant Pathol 9:435–445

    Article  PubMed  CAS  Google Scholar 

  • Douchkov D, Johrde A, Nowara D, Himmelbach A, Lueck S, Niks R, Schweizer P (2011) Convergent evidence for a role of WIR1 proteins during the interaction with the powdery mildrew fungus Blumeria graminis. J Plant Physiol 168:20–29

    Article  PubMed  CAS  Google Scholar 

  • Draeger R, Gosman N, Steed A, Chandler E, Thomsett M, Srinivasachary, Schondelmaier J, Buerstmayr H, Lemmens M, Schmolke M, Mesterhazy A, Nicholson P (2007) Identification of QTLs for resistance to Fusarium head blight, DON accumulation and associated traits in the winter wheat variety Arina. Theor Appl Genet 115:617–625

    Article  PubMed  CAS  Google Scholar 

  • Gervais L, Dedryver F, Morais JY, Bodusseau V, Negre S, Bilus M, Groos C, Trottet M (2003) Mapping of quantitative trait loci for field resistance to Fusarium head blight in European winter wheat. Theor Appl Genet 106:961–970

    PubMed  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Golkari S, Gilbert J, Prashar S, Procunier JD (2007) Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ specific and differentially expressed genes. Plant Biotechnol J 5:38–49

    Article  PubMed  CAS  Google Scholar 

  • Golkari S, Gilbert J, Prashar S, Procunier JD (2009) QTL-specific microarray gene expression analysis of wheat resistance to Fusarium head blight in Sumai-3 and two susceptible NILs. Genome 52:409–418

    Article  PubMed  CAS  Google Scholar 

  • Goswami RS, Xu JR, Trail F, Hilburn K, Kistler HC (2006) Genomic analysis of host-pathogen interaction between Fusarium graminearum and wheat during early stages of disease development. Microbiology 152:1877–1890

    Article  PubMed  CAS  Google Scholar 

  • Häberle J, Schmolke M, Schweizer G, Korzun V, Ebmeyer E, Zimmermann G, Hartl L (2007) Effects of two major Fusarium head blight resistance QTL verified in a winter wheat backcross population. Crop Sci 47:1823–1831

    Article  Google Scholar 

  • Häberle J, Holzapfel J, Schweizer G, Hartl L (2009) A major QTL for resistance against Fusarium head blight in European winter wheat. Theor Appl Genet 119:235–332

    Article  Google Scholar 

  • Handa H, Namiki N, Xu D, Ban T (2008) Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach: from QTL to candidate gene. Mol Breeding 22:71–84

    Article  Google Scholar 

  • Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999) Identification of AFLP markers closely linked to the powdery mildrew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum). Genome 42:322–329

    CAS  Google Scholar 

  • Hill-Ambroz K, Webb CA, Matthews AR, Li W, Gill BS, Fellers JP (2006) Expression analysis and physical mapping of a cDNA library of Fusarium head blight infected wheat spikes. Plant Genome Suppl Crop Sci 46:15–26

    Google Scholar 

  • Holzapfel J, Voss H-H, Miedaner T, Korzun V, Häberle J, Schweizer G, Mohler V, Zimmermann G, Hartl L (2008) Inheritance of resistance to Fusarium head blight in three European winter wheat populations. Theor Appl Genet 117(7):119–128

    Article  Google Scholar 

  • Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    Article  PubMed  Google Scholar 

  • Jia G, Chen PD, Qin GJ, Bai GH, Wang SL, Zhou B, Zhang SH, Liu DJ (2005) QTLs for Fusarium head blight response in a what DH population of Wangshuibai/Alondra′s′. Euphytica 146:183–191

    Article  CAS  Google Scholar 

  • Jia H, Cho S, Muehlbauer GJ (2009) Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and susceptible alleles. Mol Plant Microbe Interact 22:1366–1378

    Article  PubMed  CAS  Google Scholar 

  • Kang Z, Buchenauer H (1999) Immunocytochemical localization of Fusarium toxins in infected wheat spikes by Fusarium culmorum. Physiol and Mol Plant Pathol 55:275–288

    Article  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000) Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected with Fusarium culmorum. J. Phytopath 148:263–275

    Article  CAS  Google Scholar 

  • Klahr AG, Wenzel G, Mohler V (2007) Effects of environment, disease progress, plant height and heading date on the detection of QTLs for resistance to Fusarium head blight in an European winter wheat cross. Euphytica 154:17–28

    Article  CAS  Google Scholar 

  • Kong L, Ohm HW, Anderson JM (2005) Induction of wheat defense and stress related genes in response to Fusarium graminearum. Genome 48:29–40

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Ohm HW, Anderson JM (2007) Expression analysis of defense-related genes in wheat in response to infection by Fusarium graminearum. Genome 50:1038–1048

    Article  PubMed  CAS  Google Scholar 

  • Kruger WM, Pritsch C, Chao S, Muehlbauer GJ (2002) Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. Mol Plant Microbe Interact 15:445–455

    Article  PubMed  CAS  Google Scholar 

  • Li G, Yen Y (2008) Jasmonate and ethylene signaling pathways mediate Fusarium head blight resistance in wheat. Crop Sci 48:1888–1896

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta (CT)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Neu C, Keller B, Feuillet C (2003) Cytological and molecular analysis of the Hordeum vulgare-Puccinia triticina nonhost interaction. Mol Plant Microbe Interact 16:626–633

    Article  PubMed  CAS  Google Scholar 

  • Nicks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specifity? New Phytol 182(4):817–828

    Article  Google Scholar 

  • Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G (2004) QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L). Theor and Appl Genet 109:323–332

    Article  CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Article  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14(1):21–29

    Article  PubMed  CAS  Google Scholar 

  • Pritsch C, Muehlbauer GJ, Bushnell WR, Somers DA, Vance CP (2000) Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact 13:159–169

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen R (2001) Quantification on the LightCycler. In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid Cycle real-time PCR, methods and applications. Springer Press, Heidelberg

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Schaffrath U, Mauch F, Freydl E, Schweizer P, Dudler R (2000) Constitutive expression of the defense-related Rir1b gene in transgenic rice plants confers enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol 43:59–66

    Article  PubMed  CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  PubMed  CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2008) Molecular mapping of quantitative trait loci for field resistance to Fusarium head blight in a European winter wheat population. Plant Breeding 127(5):459–464

    Article  Google Scholar 

  • Schweizer P, Hunziker W, Mosinher E (1989) cDNA cloning, in vitro transcription and partial sequence analysis of mRNAs from winter wheat (Triticum aestivum L.) with induced resistance to Erysiphe graminis f.sp.tritici. Plant Mol Biol 12:643–654

    Article  CAS  Google Scholar 

  • Schweizer P, Pokorny J, Abderhalden O, Dudler R (1999) A transient assay system for the functional assessment of defense-related genes in wheat. Mol Plant Microbe Interact 12:647–654

    Article  CAS  Google Scholar 

  • Semagn KH, Skinnes H, Bjornstad A, Maroy AG, Tarkegne Y (2007) Quantitative trait loci controlling Fusarium head blight resistance and low deoxynivalenol content in hexaploid wheat population from ‘Arina’ and NK93604. Crop Sci 47:294–303

    Article  CAS  Google Scholar 

  • Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance effect G. zeae inoculation. Theor Appl Genet 118:753–764

    Article  PubMed  CAS  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a computer program to map QTL. Release Version 1.1 Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Germany

  • Van Ooijen JW, Voorrips RE (2001) Joinmap® 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

  • Walter S, Brennan JM, Arunachalam C, Ansari K, Hu X, Khan MR, Trognitz F, Trognitz B, Leonard G, Egan D, Doohan FM (2008) Components of the gene network associated with genotype-dependent response of wheat to the Fusarium mycotoxin deoxynivalenol. Funct Integr Genomics 8:421–427

    Article  PubMed  CAS  Google Scholar 

  • Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′ and 3′-UTR-binding factors. Trends Biochem Sci 28:182–188

    Article  PubMed  CAS  Google Scholar 

  • Yuan JS, Reed A, Chen F, Steward Jr CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7:85

  • Zhou W, Kolb FL, Riechers DE (2005) Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome 8:770–780

    Article  Google Scholar 

  • Zhou W, Eudes F, Laroche A (2006) Identification of differentially regulated proteins in response to a compatible interaction between the pathogen Fusarium graminearum and its host, Triticum aestivum. Proteomics 6:4599–4609

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Marc Lemmens and Dr. Barbara Steiner from the IFA Tulln, Austria for kindly providing the inoculum and for sharing their protocols and experience in inoculation and sampling technique. We would like to thank Dr. Luitgardis Seigner for access to equipment for real-time PCR and Sabine Schmidt, Marianne Linseisen, Alexandra Jestadt and especially Susanne Wüllner for excellent technical assistance in the greenhouse and the laboratory. This project was funded by the Deutsche Forschungsgemeinschaft DFG (Schw 1201/1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Diethelm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diethelm, M., Rhiel, M., Wagner, C. et al. Gene expression analysis of four WIR1-like genes in floret tissues of European winter wheat after challenge with G. zeae . Euphytica 186, 103–114 (2012). https://doi.org/10.1007/s10681-011-0498-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0498-7

Keywords

Navigation