, Volume 186, Issue 1, pp 45–55 | Cite as

Molecular cytogenetic characterization and SSR marker analysis of a leaf rust resistant wheat line carrying a 6G(6B) substitution from Triticum timopheevii (Zhuk.)

  • Andrea Uhrin
  • Éva Szakács
  • László Láng
  • Zoltán Bedő
  • Márta Molnár-Láng


A disease (powdery mildew, leaf rust) resistant line was selected from the progenies of a Triticum aestivum × Triticum timopheevii amphiploid produced at Martonvásár. This line was previously identified with C-banding as a 6G(6B) substitution. In order to detect the 6G chromosome in a wheat background, fluorescence in situ hybridization (FISH) and microsatellite marker analysis were used. Ten microsatellite markers of the 43 tested generated PCR products that were polymorphic between chromosomes 6B and 6G, and four showed length-polymorphism. The FISH hybridization pattern of 6G from T. timopheevii was identified using a combination of four repetitive DNA probes (Afa-family, pSc119.2, pTa71, (GAA)7). Genomic in situ hybridization (GISH) technique, capable of labelling the At and G genomes separately, was used on the same slides to differentiate the At and G genomes in T. timopheevii. The At and G genomes of T. timopheevii were grouped on the basis of the GISH patterns and a cyclic intergenomic translocation involving 6At-1G-4G was detected in T. timopheevii accession TRI667. The presence of 6G in the substitution line was demonstrated using FISH with the four repetitive DNA probes. Chromosome 6G was clearly identified and its FISH pattern was different from that of 6B in the parental wheat cultivar Fleischmann-481. According to field tests, the 6G(6B) substitution line has resistance to leaf rust.


Triticum aestivum T. timopheevii Leaf rust resistance Fluorescence in situ hybridization Microsatellite marker 



Thanks are due to Dr. István Molnár for his help with GISH examinations and to Mrs. B. Harasztos for revising the manuscript linguistically. This study was supported by grants from the Hungarian Ministry of Education (OM188/2007), the European Union (EU-FP7-REGPOT-2007-1, AGRISAFE No.203288) and the National Scientific Research Fund (K 75381).


  1. Badaeva ED, Jiang J, Gill BS (1991) Detection of intergenomic translocations with centromeric and noncentromeric breakpoints in T. araraticum: mechanism of origin and adaptive significance. Genome 38:976–981CrossRefGoogle Scholar
  2. Badaeva ED, Badaev NS, Gill BS, Filatenko AA (1993) Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst Evol 192:117–145CrossRefGoogle Scholar
  3. Badaeva ED, Badaev NS, Enno TM, Zeller FJ, Peusha HO (1995) Chromosome substitution in progeny of hybrids Triticum aestivum × Triticum timopheevii, resistant to brown rust and powdery mildew. Russ J Genet 31:75–77Google Scholar
  4. Bedbrook J, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560PubMedCrossRefGoogle Scholar
  5. Belea A (1961) Cercetari privind amfidiploidul Triticum aestivotimopheevi in F2 si in generatiieleurmatoare. Probl Agric 8:1–21Google Scholar
  6. Brown-Guedira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93:784–789PubMedCrossRefGoogle Scholar
  7. Dobrovolskaya OB, Sourdille P, Bernard M, Salina EA (2009) Chromosome synteny of the genome of two evolutionary wheat lines. Russ J Genet 45:1368–1375CrossRefGoogle Scholar
  8. Enno T, Peusha H, Timofeyeva L, Tohver M, Yakobson I, Priilinn O (1998) Identification of chromosomal translocations in common wheat, derivative of Triticum timopheevii. Acta Agron Hung 46:209–216Google Scholar
  9. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87CrossRefGoogle Scholar
  10. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acid Res 7:1869–1885PubMedCrossRefGoogle Scholar
  11. Gill BS, Chen PD (1987) Role of cytoplasm-specific introgression in the evolution of the polyploid wheats. Proc Natl Acad Sci USA 84:6800–6804PubMedCrossRefGoogle Scholar
  12. Gordeeva EI, Leonova IN, Kalinina NP, Salina EA, Budashkina EB (2009) Comparative cytological and molecular analysis of common wheat introgression lines containing genetic material of Triticum timopheevii Zhuk. Russ J Genet 45:1428–1437CrossRefGoogle Scholar
  13. Hutchinson J, Miller TE (1982) Comparison of Triticum timopheevii with related wheats using the techniques of C-banding and in situ hybridization. Theor Appl Genet 64:31–40CrossRefGoogle Scholar
  14. Järve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a T. timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381PubMedGoogle Scholar
  15. Jiang J, Gill BS (1994a) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosom Res 2:59–64CrossRefGoogle Scholar
  16. Jiang J, Gill BS (1994b) New 18S.26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103:179–185PubMedCrossRefGoogle Scholar
  17. Jiang J, Friebe B, Gill BS (1994) Chromosome painting of Amigo wheat. Theor Appl Genet 89:811–813CrossRefGoogle Scholar
  18. Le HT, Armstrong KC, Miki B (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep 7:150–158. doi: 10.1007/BF02669631 CrossRefGoogle Scholar
  19. Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S–5.8S–26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018CrossRefGoogle Scholar
  20. Leonova IN, Röder MS, Budashkina EB, Kalinina NP, Salina EA (2002) Molecular analysis of leaf rust-resistant introgression lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii. Russ J Genet 38:1397–1403CrossRefGoogle Scholar
  21. Leonova IN, Börner A, Budashkina E, Kalinina N, Unger O, Röder M, Salina E (2004) Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from T. timopheevii. Plant Breed 123:93–95CrossRefGoogle Scholar
  22. Leonova IN, Laikova LI, Popova OM, Unger O, Börner A, Röder MS (2007) Detection of quantitative trait loci for leaf rust resistance in wheat—T. timopheevii/T. tauschii introgression lines. Euphytica 155:79–86CrossRefGoogle Scholar
  23. Leonova IN, Röder MS, Kalinina NP, Budashkina EB (2008) Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines. Russ J Genet 44:1431–1437CrossRefGoogle Scholar
  24. Leonova IN, Budashkina EB, Flath K, Weidner A, Börner A, Röder MS (2010) Microsatellite mapping of a leaf rust resistance gene transferred to common wheat from Triticum timopheevii. Cereal Res Commun 38:211–219CrossRefGoogle Scholar
  25. Linc G, Friebe BR, Kynast RG, Molnár-Láng M, Kőszegi B, Sutka J, Gill BS (1999) Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42:497–503. doi: 10.1139/gen-42-3-497.PMID:10382296 PubMedGoogle Scholar
  26. Lutz J, Limpert E, Bartos P, Zeller FJ (1992) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Plant Breed 108:33–39CrossRefGoogle Scholar
  27. Lutz J, Hsa SLK, Limpert E, Zeller FJ (1994) Powdery mildew resistance in Aegilops tauschii Coss. and synthetic hexaploid wheats. Genet Res Crop Evol 41:151–158CrossRefGoogle Scholar
  28. Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156CrossRefGoogle Scholar
  29. Maestra B, Naranjo T (1999) Structural chromosome differentation between Triticum timopheevii and T. turgidum and T. aestivum. Theor Appl Genet 98:744–750CrossRefGoogle Scholar
  30. Maxwell JJ, Lyerly JH, Cowger C, Marshall D, Brown-Guedira G, Murphy JP (2009) MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet 119:1489–1495PubMedCrossRefGoogle Scholar
  31. McIntosh RA (1983) Genetic and cytogenetic studies involving Lr18 for resistance to Puccinia recondita. In: Sakamoto S (ed) Proceedings of the sixth international wheat genetics symposium, Faculty of Agriculture, Kyoto University, Japan, pp 777–783Google Scholar
  32. McIntosh RA (1988) Catalogue of gene symbols for wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium, Cambridge, UK, pp 1225–1320Google Scholar
  33. McIntosh RA, Gyarfas J (1971) Triticum timopheevii as a source of resistance to wheat stem rust. Z Pflanzenzücht 66:240–248Google Scholar
  34. Molnár-Láng M, Kőszegi B, Linc G, Sutka J (1996) Detection of wheat (Triticum aestivum L./Triticum timopheevii Zhuk. addition and substitution and wheat/rye translocation by C-banding and in situ hybridization. [Búza (Triticum aestivum L.)/Triticum timopheevii Zhuk. addíció, szubsztitució és búza/rozs transzlokáció kimutatása C-sávozással és in situ hibridizációval]. Növénytermelés 45:237–245Google Scholar
  35. Molnár-Láng M, Linc G, Friebe B, Sutka J (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica 112:117–123CrossRefGoogle Scholar
  36. Nagaki K, Tsujimoto H, Isono K, Sasakuma T (1995) Molecular characterization of a tandem repeat, Afa-family, and its distribution among Triticeae. Genome 38:479–486PubMedCrossRefGoogle Scholar
  37. Pedersen C, Langridge P (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome 40:589–593PubMedCrossRefGoogle Scholar
  38. Pedersen C, Rasmussen SK, Linde-Laursen I (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA satellite sequence. Genome 39:93–104PubMedCrossRefGoogle Scholar
  39. Perugini LD, Murphy JP, Marshall D, Brown-Guedira G (2008) Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet 116:417–425PubMedCrossRefGoogle Scholar
  40. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697PubMedCrossRefGoogle Scholar
  41. Peusha HO, Stephan U, Hsam SLK, Felsenstein FG, Enno TM, Zeller FJ (1995) Identification of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) IV. Breeding lines derived from wide crosses of russian cultivars with species T. timopheevii Zhuk., T. militinae Zhuk., et Migush., T. dicoccum (Schrank.) Schuebl., Aegilops speltoides Taush. Russ J Genet 31:1–7Google Scholar
  42. Peusha HO, Enno TM, Priilinn O (1996) Genetic analysis of disease resistance in wheat hybrids, derivatives of Triticum timopheevii and Triticum militinae. Acta Agron Hung 44:237–244Google Scholar
  43. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered 76:78–81Google Scholar
  44. Reader SM, Abbo S, Purdie KA, King IP, Miller TE (1994) Direct labelling of plant chromosomes by rapid in situ hybridization. Trend Genet 10:265–266CrossRefGoogle Scholar
  45. Ren TH, Yang ZJ, Yan BJ, Zhang HQ, Fu SL, Ren ZL (2009) Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213CrossRefGoogle Scholar
  46. Röder MS, Korzun V, Wendehake K, Plasche J (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  47. Rodríguez S, Perera E, Maestra B, Díez M, Naranjo T (2000) Chromosome structure of Triticum timopheevii relative to T. turgidum. Genome 43:923–930PubMedGoogle Scholar
  48. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wild hybrid. Ann Bot (Lond) 64:315–324Google Scholar
  49. Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  50. Vida G, Gál M, Uhrin A, Veisz O, Hasan Syed N, Flavell AJ, Wang Z, Bedő Z (2009) Molecular markers for the identification of resistance genes and marker-assisted selection in breeding wheat for leaf rust resistance. Euphytica 170:67–76CrossRefGoogle Scholar
  51. Yang ZJ, Ren ZL (1997) Expression of gene Pm8 for resistance to powdery mildew in wheat for Sichuan. J Sichuan Agric Univ 15:452–456Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Andrea Uhrin
    • 1
  • Éva Szakács
    • 1
  • László Láng
    • 1
  • Zoltán Bedő
    • 1
  • Márta Molnár-Láng
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations