, Volume 181, Issue 3, pp 371–383 | Cite as

Quantitative trait loci associated with salinity tolerance in field grown bread wheat

  • José Luis Díaz De León
  • Ricardo Escoppinichi
  • Nadia Geraldo
  • Thelma Castellanos
  • Abdul Mujeeb-Kazi
  • Marion S. Röder


The differential response to field salinity of the parents of the ITMI wheat mapping population (cv. Opata 85 and the synthetic hexaploid W7984) was exploited to perform a QTL analysis of the response to salinity stress of a set of agronomic traits over two seasons. The material was irrigated either with potable water (EC of 1.0 dS m−1) or with diluted seawater (12.0 dS m−1). Grain yield was positively correlated with tiller number, plant height, percentage survival, ear weight, ear length, grain number per ear, grain weight and thousand grain weight, and negatively with time to booting, anthesis and physiological maturity, under both the control and salinity stress treatments. In all, 22 QTL were detected under control conditions, and 36 under salinity stress. Of the latter, 13 were major loci (LOD > 3.0) and eight were reproducible across both seasons. Chromosome 2D harboured 15 salinity stress associated QTL and chromosome 4A six such QTL. The remaining loci were located on chromosomes 2A, 5A, 6A, 7A, 1B, 4B, 3B, 6B, 7B and 6D.


Wheat QTL Salinity stress Salinity 



We thank Matthew Reynolds (CIMMYT) for providing seed materials, Annette Heber at IPK for technical assistance and Ira Fogel at CIBNOR for editorial advice. This research was supported by CONACYT of Mexico (36608-B), the bilateral interchange program CONACYT-BMBF of Germany and PROMEP grants to J. L. Díaz De León.


  1. Ashraf M, O’Leary JW (1996) Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress: 1. Yield components and ion distribution. J Agron Crop Sci 176:91–101CrossRefGoogle Scholar
  2. Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE (2002) Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936PubMedCrossRefGoogle Scholar
  3. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57(5):1059–1078PubMedCrossRefGoogle Scholar
  4. Díaz De León JL, Carrillo-Laguna M, Rajaram S, Mujeeb-Kazi A (1995) Rapid in vitro screening of salt tolerant wheats. Cereal Res Commun 23:383–389Google Scholar
  5. Díaz De León JL, Escoppinichi R, Zavala-Fonseca R, Mujeeb-Kazi A (2000) A sea-water based salinity testing protocol and the performance of a tester set of accumulated wheat germplasm. Ann Wheat Newsl 46:88–90Google Scholar
  6. Díaz De León JL, Escoppinichi R, Molina E, López-Cesati J, Delgado R, Mujeeb-Kazi A (2001) Salt tolerant bread wheat germplasm. Ann Wheat Newsl 47:117–118Google Scholar
  7. Díaz De León JL, Escoppinichi R, Zavala-Fonseca R, Castellanos T, Röder MS, Mujeeb-Kazi A (2010) Phenotypic and genotypic characterization of salt-tolerant wheat genotypes. Cereal Res Commun 38(1):15–22. doi: 10.1556/CRC.38.2010.1.2
  8. Dubcovsky J, Santa María G, Epstein E, Luo MC, Dvorák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454CrossRefGoogle Scholar
  9. El-Hendawy SE, Hu Y, Yakout GM, Awad AM, Hafiz SE, Schmidhalter U (2005) Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur J Agron 22:243–253CrossRefGoogle Scholar
  10. Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 84:219–255Google Scholar
  11. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55(396):307–319. doi: 10.1093/jxb/erh003 PubMedCrossRefGoogle Scholar
  12. Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884CrossRefGoogle Scholar
  13. Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, genomics applications in crops, vol 2. Springer, Netherlands, pp 1–24CrossRefGoogle Scholar
  14. Gao MJ, Dvorák J, Travis RL (2001) Expression of the extrinsic 23-kDa protein of photosystem II in response to salt stress is associated with the K+/Na+ discrimination locus Kna 1 in wheat. Plant Cell Rep 20:774–778CrossRefGoogle Scholar
  15. García-Suárez J (2010) Determinación de QTLs en la población para mapeo genético de trigo ITMI e identificación de microsatélites como marcadores moleculares bajo condiciones de estrés salino y de nulo aporte de fertilización nitrogenada. Dissertation, Universidad Autónoma de Sinaloa. MéxicoGoogle Scholar
  16. García-Suárez J, Díaz De León JL, Röder M (2010) Identification of QTLs and associated molecular markers related to starch degradation in wheat seedlings (Triticum aestivum L.) under saline stress. Cereal Res Commun 38(2):163–174CrossRefGoogle Scholar
  17. Gorham J, Hardy C, Wyn Jones RG, Joppa LR, Law CN (1987) Chromosomal location for a K:Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588CrossRefGoogle Scholar
  18. Greenway K, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Ann Rev Plant Physiol 31:149–190CrossRefGoogle Scholar
  19. Huang XQ, Röder MS, Pestsova E, Börner A, Ganal MW (2001) Development and use of wheat microsatellite markers for the characterization of germplasm of hexaploid wheat (Triticum aestivum L.). In: The Plant and Animal Genome IX Conference, Jan. 2001, San Diego, California, pp 260.13–260.17Google Scholar
  20. Kato K, Miura H, Sawada S (2000) Mapping QTL controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:1114–1121CrossRefGoogle Scholar
  21. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contributing traits in two mapping population of bread wheat. Mol Breed 19:163–177CrossRefGoogle Scholar
  22. Li WL, Nelson JC, Chu CY, Shi LH, Huang SH, Liu DJ (2002) Chromosomal locations and genetic relationships of tiller and spike characters in wheat. Euphytica 125:357–366CrossRefGoogle Scholar
  23. Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114CrossRefGoogle Scholar
  24. Ma L, Zhou E, Huo N, Zhow R, Wang G, Jia J (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153(1–2):109–117Google Scholar
  25. Marino CL, Nelson JC, Lu YH, Sorrels ME, Leroz P, Tuleen NA, Lopes CR, Hart GE (1996) Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39:359–366PubMedCrossRefGoogle Scholar
  26. McIntosh RA, Hart GE, Devos, KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) Proceedings of the 9th International Wheat Genetics Symposium, vol 5. University Extension Press, University of Saskatchewan, pp 1–236Google Scholar
  27. Mujeeb-Kazi A (2003). New genetic stocks for durum and bread wheat improvement. In: Pogna N, Romano M, Pogna EA, Galterio G (eds) 10th International Wheat Genetics Symposium. Paestum, Instituto Sperimentale per la Cerealicultura. Rome, Italy, pp 772–774Google Scholar
  28. Mujeeb-Kazi A, Díaz De León JL (2002) Conventional and alien genetic diversity for salt tolerant wheats: focus on current status and new germ plasm development. In: Ahmad R, Malik KA (eds) Prospects for saline agriculture. Kluwer Academic Publishers, Netherlands, pp 69–82Google Scholar
  29. Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh (Aegilops squarrosa auct. Non L.) in synthetic hexaploides wheats (T. turgidum × T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol 43:129–134CrossRefGoogle Scholar
  30. Munns R, Hare RA, James RA, Rebetzke GJ (1999) Genetic variation for improving the salt tolerance of durum wheat. Austral J Agricult Res 51:69–74CrossRefGoogle Scholar
  31. Nelson JC (1997) QGene: Software for marker-based genomic analysis and breeding. Mol Breed 3:239–245CrossRefGoogle Scholar
  32. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995a) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524PubMedCrossRefGoogle Scholar
  33. Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995b) Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533PubMedCrossRefGoogle Scholar
  34. Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995c) Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731PubMedGoogle Scholar
  35. Pritchard DJ, Hollington PA, Davies WP, Gorham J, Díaz De León JL, Mujeeb-Kazi A (2001) Synthetic hexaploid wheats (2n = 6x = 42, AABBDD) and their salt tolerance potential. Ann Wheat Newsl 47:103–104Google Scholar
  36. Pritchard DJ, Hollington PA, Davies WP, Gorham J, Díaz De León JL, Mujeeb-Kazi A (2002) K+/Na+ discrimination in synthetic hexaploid wheat lines: transfer of the trait for K+/Na+ discrimination for Aegilops tauschii to Triticum turgidum. Cereal Res Commun 30(3–4):261–267Google Scholar
  37. Quarrie SA, Steed A, Calestani C, Semikhodoskii A, Lebreton C et al (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese spring × SQ1 and its use to compare QTL for the grain yield across a range of environments. Theor Appl Genet 110:865–880PubMedCrossRefGoogle Scholar
  38. Röder MS, Huang XQ, Ganal MW (2004) Wheat microsatellites in plant breeding-potential and implications. In: Loerz H, Wenzel G (eds) Molecular markers in plant breeding. Springer-Verlag, Heidelberg, pp 255–266Google Scholar
  39. Semikhodoskii AG (1997) Mapping Quantitative traits for salinity responses in wheat (Triticum aestivum L.). Dissertation. East Anglia University, England, UKGoogle Scholar
  40. Semikhodoskii AG, Quarrie SA, Snape JW (1996) Mapping quantitative trait loci for salinity response in wheat. In: Proceeding of drought and plant production, Lepenski Vir Meeting. Serbia, pp 83–92Google Scholar
  41. Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269Google Scholar
  42. Shannon MC (1982) Genetics of salt tolerance: new challenges. In: Pietro AS (ed) Biosaline research: a look to the future. Plenum Publishing, New York, pp 271–282Google Scholar
  43. Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrels ME, Dvorak J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for Group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59PubMedCrossRefGoogle Scholar
  44. Yokoy S, Bressan RB, Hasegawa PM (2002) Salt stress tolerance of plants. In Iwanaga M (ed) Genetic engineering of crop plants for abiotic stress (JIRCAS working report No. 23), pp 25–33Google Scholar
  45. Zavala-Fonseca R, Escoppinichi R, Mujeeb-Kazi A, Díaz De León JL (1998) Salt tolerance expression of synthetic wheat (T. durum AABB × T. tauschii DD) irrigated with sea water dilutions. VIII National congress of biochemistry and molecular biology of plants and 2nd symposium Mexico-U.S.A. 15–18 March 1998. Guanajuato, Mexico, p 28Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • José Luis Díaz De León
    • 1
  • Ricardo Escoppinichi
    • 1
  • Nadia Geraldo
    • 1
  • Thelma Castellanos
    • 2
  • Abdul Mujeeb-Kazi
    • 3
  • Marion S. Röder
    • 4
  1. 1.Universidad Autonoma de Baja California SurLa PazMexico
  2. 2.Centro de Investigaciones Biologicas (CIBNOR)La PazMexico
  3. 3.Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT)El BatánMexico
  4. 4.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations