, Volume 183, Issue 2, pp 227–241 | Cite as

Susceptibility of rice to sheath blight: an assessment of the diversity of rice germplasm according to genetic groups and morphological traits

  • L. Willocquet
  • M. Noel
  • R. Sackville Hamilton
  • S. Savary


A sample of 200 accessions was selected from IRRI’s rice (Oryza sativa) germplasm bank, that represents rice diversity in terms of genetic groups (aus, indica, tropical japonica, temperate japonica, and aromatic) and crop duration cycles of the accessions. The sample also captured the diversity of rice germplasm in terms of morphological traits. The accessions were assessed for their level of susceptibility to sheath blight in a field experiment, by inoculating hills at the centre of microfields and measuring disease intensity. Morphological traits of all accessions were also measured. Analyses of variance indicated significant effects of genetic groups and genotypes on sheath blight intensity, measured by different variables (lesion height, relative lesion height, leaf severity, sheath severity, and disease incidence on tillers). Results from multivariate analyses (canonical correlation, hierarchical cluster analyses, correspondence analysis, and discriminant analysis), and logistic regressions indicated that morphological traits were strongly associated with disease intensity, and that their effect was larger than that of genetic groups. In particular, plant height was associated with low sheath blight intensity. Effects of genetic groups could however also be detected, and the combination of results suggested a ranking of genetic groups with increasing level of susceptibility to sheath blight as: aus < indica < japonica.


Germplasm Oryza sativa Rhizoctonia solani Rice Sheath blight Susceptibility 



We wish to thank M. Banasihan, JS. Bigornia, N. Castilla, F. de Guzman, W. Lanip, NJ. Magculia, I Mamiit, L. Matundan, E. Pizarra, D. Salisi, and E. Silab for their technical assistance. We are grateful to Miss Grace Centeno (IRRI Climate Unit) for providing the weather data. This work was partly supported by the Bill & Melinda Gates Foundation under the Cereal System Initiative for South Asia Project.


  1. Agresti A (2002) Categorial data analysis, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  2. Benzécri JP (1973) L’Analyse des Données. Tome 2. L’Analyse des Correspondances. Dunod, ParisGoogle Scholar
  3. Bioversity International, IRRI and WARDA (2007) Descriptors for wild and cultivated rice (Oryza spp.)Google Scholar
  4. Butt DJ, Royle DJ (1980) The importance of terms and definitions for a conceptually unified epidemiology. In: Palti J, Kranz J (eds) Comparative epidemiology. A tool for better disease management. Pudoc, Wageningen, pp 29–45Google Scholar
  5. Castilla NP, Leano RM, Elazegui FA, Teng PS, Savary S (1996) Effects of plant contact, inoculation pattern, leaf wetness regime, and nitrogen supply on inoculum efficiency in rice sheath blight. J Phytopathol 144:187–192CrossRefGoogle Scholar
  6. Dagnelie P (1975) Analyse statistique a plusieurs variables. Les presses agronomiques de Gembloux. Gembloux, BelgiqueGoogle Scholar
  7. Fisher L, Van Ness JW (1971) Admissible clustering procedures. Biometrika 58:91–104CrossRefGoogle Scholar
  8. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638PubMedCrossRefGoogle Scholar
  9. Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30CrossRefGoogle Scholar
  10. Gomez KA, Gomez AA (1975) Statistical procedures for agricultural research, 2nd edn. Wiley, New YorkGoogle Scholar
  11. Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, LondonGoogle Scholar
  12. Harrell FE Jr (2001) Regression modeling strategies: with applications to models, logistic regression, and survival analysis. Springer-Verlag, New-YorkGoogle Scholar
  13. IRGCIS (2010) Accessed 8 July 2010
  14. IRRI, IBPGR (1980) Descriptors for rice Oryza sativa L. IRRI, Los Baños, p 21Google Scholar
  15. Lebart L, Morineau A, Fénelon JP (1982) Traitement des Données Statistiques. Méthodes et Programmes. Dunod, ParisGoogle Scholar
  16. McNally KL, Manzano R, Macatangay M, Redondo M, Lacorte V, Zaidem M, Detras J, Barile M, Angeles R, Quilloy S, Gamalinda M, Sancinagco M, Pabale D, Sackville Hamilton NR, Benoit L, Rivallan R, Courtois B, Billot C, Garavito A, Lorieux M, Martinez CP, Borba T, Brondani RV, Brondani C, Cissoko M, Ndjiondjop MN, Famoso A, McCouch SR (2007) Population structure of the rice composite set. Generation challenge programme annual research meeting, September 2007, Benoni, Poster Abstracts, p. 25.
  17. Mew TW (1991) Disease management in rice. In: CRC handbook of pest management in agriculture, 2nd edn, vol III. CRC Press, Inc. Boca Raton, Ann Arbor, pp 279–299Google Scholar
  18. Ou SH (1985) Rice diseases, 2nd edn. Commonwealth Mycological Institute, SurreyGoogle Scholar
  19. Parlevliet JE, Van Ommeren A (1975) Partial resistance of barley to leaf rust: Puccinia hordei. II. Relationship between field trials microplot tests and latent period. Euphytica 24:293–303CrossRefGoogle Scholar
  20. Pinson SRM, Capdevielle FM, Oard JH (2005) Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci 45:503–510CrossRefGoogle Scholar
  21. Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29PubMedCrossRefGoogle Scholar
  22. Robinson RA (1976) Plant pathosystems. Springer, BerlinGoogle Scholar
  23. Sackville Hamilton NR, Skøt L, Chorlton KH, Thomas ID, Mizen S (2002) Molecular genecology of temperature response in Lolium perenne: preliminary analysis to reduce false positives. Mol Ecol 11:1855–1863PubMedCrossRefGoogle Scholar
  24. Savary S, Mew TW (1996) Analyzing crop losses due to Rhizoctonia solani: rice sheath blight, a case study. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species taxonomy, molecular biology, ecology, pathology and disease control. Kluwer Academic Publishers, Dordrecht, pp 237–245Google Scholar
  25. Savary S, Bosc JP, Noirot M, Zadoks JC (1988) Peanut rust in West Africa: a new component in a multiple pathosystem. Plant Dis 72:1001–1009CrossRefGoogle Scholar
  26. Savary S, Castilla NP, Elazegui FA, McLaren CG, Ynalvez MA, Teng PS (1995) Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. Phytopathology 85:959–965CrossRefGoogle Scholar
  27. Savary S, Elazegui FA, Teng PS (1996) A survey portfolio for the characterization of rice pest constraints. IRRI Discussion Papers Series no. 18. IRRI, Los BañosGoogle Scholar
  28. Savary S, Willocquet L, Elazegui FA, Castilla N, Teng PS (2000) Rice pest constraints in tropical Asia: quantification and yield loss due to rice pests in a range of production situations. Plant Dis 84:357–369CrossRefGoogle Scholar
  29. Sharma NR, Teng PS (1990) Effect of inoculum source on sheath blight development. Int Rice Res Newsl 15:20–21Google Scholar
  30. Shrestha CL, Oña I, Muthukrishnan S, Mew TW (2008) Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani. Eur J Plant Pathol 120:69–77CrossRefGoogle Scholar
  31. Srinivasachary, Willocquet L, Savary S (2011) Resistance to rice sheath blight (Rhizoctonia solani Kühn) [(teleomorph: Thanatephorus cucumeris (A.B. Frank) Donk.] disease: current status and perspectives. Euphytica 178:1–22CrossRefGoogle Scholar
  32. Teng PS, Torres CQ, Nuque FL, Calvero SB (1990) Current knowledge on crop losses in tropical rice. In: Crop loss assessment in rice, IRRI, Philippines, pp 39–54Google Scholar
  33. Van der Plank JE (1978) Genetic and molecular basis of plant pathogenesis. Springer, BerlinGoogle Scholar
  34. Wilkinson L, Engelman L, Corter J, Coward M (2007) Cluster analysis. In: Statistics I. SYSTAT Software, Inc. San Jose, pp I-65–I-124Google Scholar
  35. Yang XB, Snow JP, Berggen GT (1991) Patterns of Rhizoctonia foliar blight on soybean and effect of aggregation on disease development. Phytopathology 81:287–293CrossRefGoogle Scholar
  36. Zadoks JC, Schein RD (1979) Epidemiology and plant disease management. Oxford University Press, New YorkGoogle Scholar
  37. Zuo S, Zhang L, Wang H, Yin Y, Zhang Y, Chen Z, Ma Y, Pan X (2008) Prospect of the QTL-qSB-9Tq utilized in molecular breeding program of japonica rice against sheath blight. J Genet Genomics 35:499–505PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • L. Willocquet
    • 1
  • M. Noel
    • 1
  • R. Sackville Hamilton
    • 2
  • S. Savary
    • 1
  1. 1.Plant Breeding, Genetics and Biotechnology DivisionInternational Rice Research InstituteMetro ManilaPhilippines
  2. 2.Genetic Resources CentreInternational Rice Research InstituteMetro ManilaPhilippines

Personalised recommendations