Advertisement

Euphytica

, Volume 181, Issue 2, pp 261–266 | Cite as

Development and application of a SRAP marker for the identification of sex in Buchloe dactyloides

  • Ying-jie Zhou
  • Xian-guo Wang
  • Xin-quan Zhang
Article

Abstract

Buffalograss, Buchloe dactyloides (Nutt.) Engelm, is a dioecious turfgrass native to the Great Plains of North America. Since its naturalization, it has become the most wildly cultivated warm-season turfgrass in northern China. While dioecious plants represent only a small proportion of all plant species, they are important models in the study of plant sex determination and evolution. The identification of the sexes is important in the theory and practice of breeding programs. At present, there is no effective method to determine the sex of early stage buffalograss. The objective of this study was to use sequence-related amplified polymorphism (SRAP) and integrated bulked segregant analysis (BSA) technology to find sex linked markers in B. dactyloides. A total of 228 primer combinations were screened and 2,690 SRAP bands examined. Only ME9/EM2 could generate a specific fragment (~240 bp) in all the female plants, which was absent in male plants. The methods described here provide a simple and reproducible means of early sex identification in B. dactyloides.

Keywords

Buchloe dactyloides Dioecious Sex identification Sequence-related amplified polymorphism Bulked segregant analysis 

Notes

Acknowledgments

This study was supported by National Natural Science Foundation of China (30800799).

References

  1. Alstrom-Rapaport C, Lascoux M, Wang YC et al (1998) Identification of a RAPD marker linked to sex determination in the basket willow (Salix viminalis L.). J Hered 89(1):44–48CrossRefGoogle Scholar
  2. Beard JB (1973) Turfgrass: science and culture. Prentice-Hall, Englewood CliffsGoogle Scholar
  3. Beetle AA (1950) Buffalograss-native of the shortgrass plains. Univ Wyoming Agric Exp Stn Bull 293:1–31Google Scholar
  4. Budak H, Shearman RC, Parmaksiz I et al (2004a) Molecular characterization of buffalo grass germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108(2):328–334PubMedCrossRefGoogle Scholar
  5. Budak H, Shearman RC, Gaussoin RE et al (2004b) Application of sequence-related amplified polymorphism markers for characterization of turfgrass species. Hortscience 39(5):955–958Google Scholar
  6. Budak H, Shearman RC, Parmaksiz I et al (2004c) Comparative analysis of seeded and vegetative buffalograsses based on pylogenetic relationship using ISSR, SSR, RAPD and SRAP. Theor Appl Genet 109:280–288PubMedCrossRefGoogle Scholar
  7. Budak H, Shearman RC, Gulsen O et al (2005) Understanding ploidy complex and geographic origin of the Buhcloe dactyloides genome using cytoplasmic and nuclear marker system. Theor Appl Genet 111:1545–1552PubMedCrossRefGoogle Scholar
  8. Chaves-Bedoya G, Nunez V (2007) A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica 153(1/2):215–220Google Scholar
  9. Cheplick GP (1998) Population biology of grasses. Cambridge University Press, Cambridge, pp 136–138CrossRefGoogle Scholar
  10. Cristiana Moliterni VM et al (2004) The sexual differentiation of Cannabis sativa L.: a morphological and molecular study. Euphytica 140:95–106CrossRefGoogle Scholar
  11. Deputy JC, Ming R, Ma H et al (2003) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106(1):107–111Google Scholar
  12. Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  13. Gao WJ, Li R, Li L et al (2007) Identification of two markers linked to the sex locus in dioecious Asparagus officinalis plants. Russ J Plant Physiol 54(6):816–821CrossRefGoogle Scholar
  14. Gill GP, Harvey CF, Gardner RC et al (1998) Development of sex-linked PCR markers for gender identification in Actinidia. Theor Appl Genet 97(3):439–445CrossRefGoogle Scholar
  15. Gunter LE, Roberts GT, Lee K et al (2003) The development of two flanking SCAR markers linked to a sex determination locus in Salix viminalis L. J Hered 94(2):185–189PubMedCrossRefGoogle Scholar
  16. Hitchcock AS (1951) Manual of the grasses of the United States, 2nd edn. US Department of Agriculture, Misc Publication 200, WashingtonGoogle Scholar
  17. Hormaza JI, Dollo L, Polito VS (1994) Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet 89(1):9–13CrossRefGoogle Scholar
  18. Huff DR, Wu L (1987) Sex expression in buffalograss under different environments. J Crop Sci 27:623–626CrossRefGoogle Scholar
  19. Huff DR, Wu L (1992) Distribution and inheritance of inconstant sex forms in natural populations of dioecious buffalograss (Buchloe dactyloides). Am J Bot 79:207–215CrossRefGoogle Scholar
  20. Jiang C, Sink KC (1997) RAPD and SCAR markers linked to the sex expression locus M in asparagus. Euphytica 94:329–333CrossRefGoogle Scholar
  21. Khadka DK, Nejidat A, Tai M et al (2002) DNA markers for sex: molecular evidence for gender dimorphism in dioecious Mercurialis annua L. Mol Breed 9:251–257CrossRefGoogle Scholar
  22. Korpelainen H (2002) A genetic method to resolve gender complements investigations on sex ratios in Rumex acetosa. Mol Ecol 11(10):2151–2156PubMedCrossRefGoogle Scholar
  23. Lemos EGM, Silva CLSP, Zaidan HA (2002) Identification of sex in Carica papaya L. using RAPD markers. Euphytica 127(2):179–184CrossRefGoogle Scholar
  24. Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  25. Li G, Gao M, Yang B, Quiros CF (2003) Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet 107:168–180PubMedCrossRefGoogle Scholar
  26. Liang CAI, Xiaocheng TIAN, Ming LI et al (2002) Application of RAPD in discrimination of Podocarpus macrophyllus’s sex. J Fudan Univ 41(6):635–640Google Scholar
  27. Liao L, Liu J, Dai Y et al (2009) Development and application of SCAR markers for sex identification in the dioecious species Ginkgo biloba L. Euphytica 169:49–55CrossRefGoogle Scholar
  28. Lin Z, Zhang X, Nie Y et al (2003) Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull 48(19):2063–2067CrossRefGoogle Scholar
  29. Mandolino G, Carboni A, Forapani S et al (1998) Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theor Appl Genet 98(1):86–92CrossRefGoogle Scholar
  30. Masayuki M (2009) Development of SCAR markers for sex determination in the dioecious shrub Aucuba japonica (Cornaceae). Genome 52:231–237CrossRefGoogle Scholar
  31. Ming R, Moore PH (2007) Genomics of sex chromosomes. Curr Opin Plant Biol 10:123–130PubMedCrossRefGoogle Scholar
  32. Mulcahy DL, Weeden NF, Kesseli et al (1992) DNA probes for the Y-chromosome of Silene latifolia, a dioecious angiosperm. Sex Plant Reprod 5(1):86–88CrossRefGoogle Scholar
  33. Niu JZ (2006) Study on the selection of cultivar, clonal growth and mechanism of resource translocating between Clonal Ramets of Buffalograss (Buchloe dactyloides). Dissertation for Master’s Degree, China Agricultural UniversityGoogle Scholar
  34. Paran I, Michelmore RW (1993) Development of reliable PCR-based marker linked to Downey mildew resistant genes in lettuce. Theor Appl Genet 85:985–993CrossRefGoogle Scholar
  35. Parasnis AS, Ramakrishna W, Chowdari KV (1999) Mierosatellite (GATA) n reveals sex-specific differences in PaPaya. Theor Appl Genet 99(6):1047–1052CrossRefGoogle Scholar
  36. Parasnis AS, Gupta VS, Tamhankar SA et al (2000) A highly reliable sex diagnostic PCR assay for mass screening of papaya seedlings. Mol Breed 6(3):337–344CrossRefGoogle Scholar
  37. Parker JS (1990) Sex chromosomes and sexual differentiation in flowering plants. Chromosom Today 10:187–198Google Scholar
  38. Parrish TL, Koelewijn HP, van Dijk PJ (2004) Identification of a male-specific AFLP marker in a functionally dioecious Ficus fulva. Sex Plant Reprod 17:17–22CrossRefGoogle Scholar
  39. Prakash S, Staden JV (2006) Sex identification in Encephalartos natalensis (Dyer and Verdoorn) using RAPD markers. Euphytica 152:197–200CrossRefGoogle Scholar
  40. Reamon-Buttner SM, Jung C (2000) AFLP-derived STS markers for the identification of sex in Asparagus officinalis L. Theor Appl Genet 100:432–438CrossRefGoogle Scholar
  41. Reeder JR (1971) Notes on Mexican grasses. IX. Miscellaneous chromosome numbers. Brittonia 23:105–117CrossRefGoogle Scholar
  42. Ren C-X, Huang J, Chang XY et al (2007) RAPD and SCAR molecular markers for male trait in Carica papaya. J Fruit Sci 24(1):72–75Google Scholar
  43. Roodt R, Spies JJ, Burger TH (2002) Preliminary DNA finger-printing of the turfgrass Cynodon dactylon (Poaceae: Cloridoideae). Bothalia 32:117–122Google Scholar
  44. Ruas CF, Fairbanks DJ, Evans RP et al (1998) Male-specific DNA in the dioecious species Atriplex garrettii (Chenopodiaceae). Am J Bot 85(2):162–197PubMedCrossRefGoogle Scholar
  45. Saghai-Maroof MA, Soliman KM, Jorgensen RA et al (1984) Ribosomal DNA spacer-length polymorphisms in barely: ribosomal inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018PubMedCrossRefGoogle Scholar
  46. Shao MJ (1998) Breeding of new variety of buffalograss. The Temple of Heaven. Beijing (unpublished data)Google Scholar
  47. Stilio VS, di Kesseli RV, Mulcahy DL (1998) A pseudo autosomal random amplified polymorphic DNA marker for the sex chromosomes of Silene dioica. Genetics 149(4):2057–2062PubMedGoogle Scholar
  48. Tang DM, Luo SP, Li J et al (2003) Sex identification of pistachio by using RAPD analysis. J Fruit Sci 20(2):124–126Google Scholar
  49. Torjek O, Bucherna N, Kiss E et al (2002) Novel male-specific molecular markers (MADC5, MADC6) in hemp. Euphytica 127(2):209–218CrossRefGoogle Scholar
  50. Urasaki N, Tokumoto M, Tarora K et al (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285PubMedCrossRefGoogle Scholar
  51. Vyskot B, Hobza R (2004) Gender in plants: sex chromosomes are emerging from the fog. Trends Genet 20:432–438PubMedCrossRefGoogle Scholar
  52. Xu WJ, Wang BW, Cui KM (2004) RAPD and SCAR markers linked to sex determination in Eucommia ulmoides Oliv. Euphytica 136:233–238CrossRefGoogle Scholar
  53. Yakubov B, Barazani O, Golan-Goldhirsh A (2005) Combination of SCAR primers and touch-down PCR for sex identification in Pistacia vera L. Sci Hortic 103(4):473–478CrossRefGoogle Scholar
  54. Yampolsky C, Yampolsky H (1922) Distribution of sex forms in the phanerogamic flora. Bibl Genet 3:1–62Google Scholar
  55. Yanan H, Fenglan L, Shumin G (2004) Sex determination and sexual organ differentiation in flowering plants. For Stud China 4(6):51–57Google Scholar
  56. Yao CC, Wang YJ, Liu XF et al (2005) Obtainment and application of RAPD marker S1032–850 linked to male gene in Actinidia. J Agric Biotechnol 13(5):557–561Google Scholar
  57. Zeng B, Zhang XQ, Lan Y et al (2008) Evaluation of genetic diversity and relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers. Can J Plant Sci 88(1):53–60CrossRefGoogle Scholar
  58. Zheng L, Junsong P, Yuan G et al (2008) Development and fine mapping of three codominant SCAR markers linked to the M/m gene in the cucumber plant (Cucumis sativus L.). Theor Appl Genet 117:1253–1260CrossRefGoogle Scholar
  59. Zheng C, Zhu X, Fang L et al (2009) Analysis of sex and strains of Ficus awkeotsang Makino by SRAP. Chin J Trop Crops 12(30):1740–1745Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Grassland ScienceChina Agricultural UniversityBeijingChina
  2. 2.Department Grassland ScienceSichuan Agricultural UniversityYaanChina

Personalised recommendations