, Volume 175, Issue 3, pp 357–364 | Cite as

Selection of U and M genome-specific wheat SSR markers using wheat–Aegilops biuncialis and wheat–Ae. geniculata addition lines

  • Annamária Schneider
  • István Molnár
  • Márta Molnár-Láng


We selected wheat SSR markers specific to the U and M genomes of Aegilops species. A total of 108 wheat SSR markers were successfully tested on Ae. biuncialis (2n = 4x = 28, UbUbMbMb), on five wheat–Ae. biuncialis addition lines (2Mb, 3Mb, 7Mb, 3Ub and 5Ub) and on a wheat–Ae. geniculata (1Ug, 2Ug, 3Ug, 4Ug, 5Ug, 7Ug, 1Mg, 2Mg, 4Mg, 5Mg, 6Mg and 7Mg) addition series. Among the markers, 86 (79.6%) were amplified in the Ae. biuncialis genome. Compared with wheat, polymorphic bands of various lengths were detected on Ae. biuncialis for 35 (32.4%) of the wheat microsatellite markers. Three of these (8.6%) exhibited specific PCR products on wheat–Ae. biuncialis or wheat–Ae. geniculata addition lines. The primers GWM44 and GDM61 gave specific PCR products on the 2Mb and 3Mb wheat–Ae. biuncialis addition lines, but not on the 2Mg addition line of Ae. geniculata. A specific band was observed on the 7Ug wheat–Ae. geniculata addition line using the BARC184 primer. These three markers specific to the U and M genomes are helpful for the identification of 2Mb, 3Mb and 7Ug chromosome introgressions into wheat.


Goatgrass Microsatellite markers Polymorphism 



The technical assistance of Mrs. J. Bucsi, Mrs. E. Türkösi and Mrs. I. Keserű is gratefully acknowledged. This work was financially supported by the Hungarian National Scientific Research Fund, No. PD75450 and by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The Syngene G Box gel documentation system used in this research was purchased with funds from the AGRISAFE Project (No. 203288 EU-FP7-REGPOT 2007-1). We thank Dr. B. Friebe for supplying the wheat–Ae. geniculata addition lines and express our gratitude to B. Harasztos and A. Bacskovszky for linguistic revision of the manuscript.


  1. Adonina IG, Salina EA, Pestsova EG, Röder MS (2005) Transferability of wheat microsatellites to diploid Aegilops species and determination of chromosomal localizations of microsatellites in the S genome. Genome 48:959–970CrossRefPubMedGoogle Scholar
  2. Badaeva ED, Amosova AV, Samatadze TE, Zoschchuk SA, Shostak NG, Chikida NN, Zelenin AV, Raupp WJ, Friebe B, Gill BS (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76CrossRefGoogle Scholar
  3. Castilho A, Miller TE, Heslop-Harrison JS (1997) Analysis of a set of homoeologous group 1 wheat-Aegilops umbellulata recombinant chromosome lines using genetic markers. Theor Appl Genet 94:293–297CrossRefGoogle Scholar
  4. Cifuentes M, Benavente E (2009) Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theor Appl Genet 119:805–813CrossRefPubMedGoogle Scholar
  5. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078CrossRefPubMedGoogle Scholar
  6. Csanádi G, Vollmann J, Stift G, Lelley T (2001) Seed quality QTL identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919CrossRefGoogle Scholar
  7. Friebe B, Tuleen N, Gill BS (1999) Development and identification of a set of Triticum aestivumAegilops geniculata chromosome addition lines. Genome 42:374–380CrossRefGoogle Scholar
  8. Gill BS, Browder LE, Hatchett JH, Harvey TL, Martin TJ, Raupp WJ, Sharma HC, Waines JG (1983) Disease and insect resistance in wild wheats. In: Sakamoto S (ed) Proc 6th int wheat genet symp, Faculty of Agriculture. Kyoto University, Japan, pp 785–792Google Scholar
  9. Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Breed 69:314–316Google Scholar
  10. Gill BS, Raupp WJ, Sharma HC, Browder LE, Hatchett JH, Harvey TL, Moseman JG (1986) Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug and Hessian fly. Plant Dis 70:553–556CrossRefGoogle Scholar
  11. Gill KS, Lubbers EL, Gill BS, Raupp WJ, Cox TS (1991) A genetic linkage map of Triticum tauschii (DD) and its relationship to the D genome of bread wheat (AABBDD). Genome 34:362–374Google Scholar
  12. Gupta PK, Balyan HS, Edwards KJ, Isaac P, Korzun V, Roeder M, Gautier MF, Jourdier P, Schatter AR, Dubcovsky J, De la Pena RC, Khairallah M, Penner G, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 wheat microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422CrossRefPubMedGoogle Scholar
  13. Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744CrossRefPubMedGoogle Scholar
  14. Hang A, Burton CS, Bockelman H (2006) Characterization of wild wheat (Aegilops L.) and wild barley (Hordeum L.) germplasm using intersimple sequence repeat (ISSR) and general DNA primers. Plant Genet Res Newsl 147:25–28Google Scholar
  15. Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome analysis: the first 10 years. Genome 37:717–725PubMedGoogle Scholar
  16. Jiang J, Gill BS (2006) Current status and future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068CrossRefPubMedGoogle Scholar
  17. Khan RR, Bariana HS, Dholakia BB, Naik SV, Lagu MD, Rathjen AJ, Bhavani S (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850CrossRefPubMedGoogle Scholar
  18. Lagudah ES, Appels R, Brown AHD, McNeil D (1991) The molecular-genetic analysis of Triticum tauschii, the D-genome donor to hexaploid wheat. Genome 34:375–386Google Scholar
  19. Lelley T, Stachel M, Grausgruber H, Vollmann J (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668CrossRefPubMedGoogle Scholar
  20. Leonova IN, Röder MS, Nasyrova F (2009) The application of wheat microsatellite markers for the detection of interspecific variation in tetraploid Aegilops species with C and U genomes. Cereal Res Commun 37:335–343CrossRefGoogle Scholar
  21. Logojan AA, Molnár-Láng M (2000) Production of Triticum aestivumAegilops biuncialis chromosome additions. Cereal Res Commun 28:221–228Google Scholar
  22. Markova M, Vyskot B (2009) New horizons of genomic in situ hybridization. Cytogenet Genome Res 126:368–375CrossRefPubMedGoogle Scholar
  23. McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OD (2005) Catalogue of gene symbols for wheat: 2005 supplement. Annu Wheat Newsl 51:250–285Google Scholar
  24. Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159CrossRefGoogle Scholar
  25. Molnár I, Benavente E, Molnár-Láng M (2009) Detection of intergenomic chromosome rearrangements in irradiated Triticum aestivumAegilops biuncialis amphiploids by multicolour genomic in situ hybridization. Genome 52:156–165CrossRefPubMedGoogle Scholar
  26. Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele kr1 from Chinese Spring into winter wheat variety Martonvásári 9. Euphytica 90:301–305CrossRefGoogle Scholar
  27. Molnár-Láng M, Linc G, Nagy ED, Schneider A, Molnár I (2002) Molecular cytogenetic analysis of wheat-alien hybrids and derivatives. Acta Agron Hung 50:303–311CrossRefGoogle Scholar
  28. Monte JV, De Nova PJG, Soler C (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135:233–238CrossRefPubMedGoogle Scholar
  29. Nagy ED, Christoph E, Molnár-Láng M, Lelley T (2003) Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL.1RS wheat rye translocation. Euphytica 132:243–250CrossRefGoogle Scholar
  30. Nagy ED, Molnár I, Schneider A, Kovács G, Molnár-Láng M (2006) Characterisation of chromosome-specific S-SAP markers and their use to study genetic diversity in Aegilops species. Genome 49:289–296CrossRefPubMedGoogle Scholar
  31. Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Röder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivumAegilops markgrafii addition lines. Theor Appl Genet 96:138–146CrossRefGoogle Scholar
  32. Pestsova E, Ganal MW, Röder MS (2000a) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:697–698CrossRefGoogle Scholar
  33. Pestsova E, Korzun V, Goncharov NP, Hammer K, Ganal MW, Röder MS (2000b) Microsatellite analysis of Aegilops tauschii germplasm. Theor Appl Genet 101:100–106CrossRefGoogle Scholar
  34. Raupp WJ, Gill BS, Friebe B, Wilson DL, Cox TS, Sears RG (1995) The Wheat Genetics Resource Center: germ plasm conservation, evaluation and utilization. In: Li ZS, Xin ZY (eds) Proc 8th int wheat genet symp. China Agricultural Scientech Press, Beijing, China, pp 469–465Google Scholar
  35. Raupp WJ, Friebe B, Wilson DL, Cox TS, Gill BS (1997) Kansas State’s Wheat Genetics Resource Center provides unique oasis for germplasm research. Diversity 13:21–23Google Scholar
  36. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  37. Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618CrossRefPubMedGoogle Scholar
  38. Schneider A, Molnár-Láng M (2009) Detection of the 1RS chromosome arm in Martonvásár wheat genotypes containing 1BL.1RS or 1AL.1RS translocations using SSR and STS markers. Acta Agron Hung 57:409–416CrossRefGoogle Scholar
  39. Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat-Aegilops biuncialis disomic addition lines. Genome 48:1070–1082CrossRefPubMedGoogle Scholar
  40. Somers DJ, Isaac P, Edwards K (2004) A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114CrossRefPubMedGoogle Scholar
  41. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan TB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560CrossRefPubMedGoogle Scholar
  42. van Slageren MW (1994) Wild wheats: a monograph of Aegilops L., and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Agricultural University, Wageningen, Netherlands, and the International Center for Agricultural Research in Dry Areas, Aleppo, Syria. pp 139–404Google Scholar
  43. Zaharieva M, Monneveux P, Henry M, Rivoal R, Valkoun J, Nachit MM (2001) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:33–38CrossRefGoogle Scholar
  44. Zaharieva M, Suenaga K, William HM, Mujeeb-Kazi A (2003) Microsatellite markers for identification of Aegilops geniculata Roth. M- and U-genome chromosomes in wheat background. Ann Wheat Newsl 49:75–78Google Scholar
  45. Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75CrossRefGoogle Scholar
  46. Zhang H, Reader SM, Liu X, Jia JZ, Gale MD, Devos KM (2001) Comparative genetic analysis of the Aegilops longissima and Ae. sharonensis genomes with common wheat. Theor Appl Genet 103:518–525CrossRefGoogle Scholar
  47. Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Annamária Schneider
    • 1
  • István Molnár
    • 1
  • Márta Molnár-Láng
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations