, Volume 169, Issue 1, pp 57–68 | Cite as

A major QTL associated with preharvest sprouting in rapeseed (Brassica napus L.)

  • Faqiang Feng
  • Pingwu Liu
  • Dengfeng Hong
  • Guangsheng Yang


Preharvest sprouting (PHS) is one of the most important factors affecting the cereal production worldwide, in regions characterized by rainfall and high humidity during harvest season. It is sometimes a problem in rapeseed (Brassica napus L.), especially in production of commercial F1 hybrids. To detect quantitative trait loci (QTL) controlling PHS, a F2 population consisting of 269 F2:3 lines was created from the cross between a PHS-tolerant line (117AB) and a PHS-susceptible line (7,605). A linkage map was constructed using 35 Simple Sequence Repeat markers and 242 Amplified Fragment Length Polymorphism markers. PHS was measured as a percentage of sprouted seeds on the mother plant, 7 days after physiological maturity. Five putative QTLs for PHS were detected and located on LG2 (N11) and LG7 (N3), respectively. Phenotypic variance explained by each QTL ranged from 4.11 to 50.78% and the five putative QTLs explained about 75.63% of the total phenotypic variance. A major QTL was identified on LG2 (N11) flanked by P3C4180 and C6C13160, which explained 50.78% of the total phenotypic variance. Meanwhile, we detected four significant epistatic interactions with a total contribution of 17.16% of the total phenotypic variance.


Brassica napus Preharvest sprouting (PHS) Quantitative trait loci (QTL) 



This research was supported by funding from the National Key Technology Research and Development Program (No. 2006BAD01A04), Program for Changjiang Scholars and Innovation Research Team in University (No. IRT0442), the National High Technology Research and Development Program of China (863 Program) (No.2006AA10Z1B8), the Program for “948” (2003-Q04) and Double Low Rapeseed Cultivar Breeding Project from Hubei Provincial Government (2006AA206A03).


  1. Alonso-Blanco C, Bentsink L, Hanhart CJ et al (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729PubMedGoogle Scholar
  2. Anderson JA, Sorrells ME, Tanksley SD (1993) RFLP analysis of genomic regions associated with resistance to preharvest sprouting in wheat. Crop Sci 33:453–459Google Scholar
  3. Barnard A, van Deventer CS, Maartens H (2005) Genetic variability of preharvest sprouting—the South African situation. Euphytica 143:291–296. doi: 10.1007/s10681-005-7885-x CrossRefGoogle Scholar
  4. Bentsink L, Jowett J, Hanhart CJ et al (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047. doi: 10.1073/pnas.0607877103 PubMedCrossRefGoogle Scholar
  5. Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066. doi: 10.1105/tpc.9.7.1055 PubMedCrossRefGoogle Scholar
  6. Cai HW, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846. doi: 10.1007/s001220051360 CrossRefGoogle Scholar
  7. Chang TT, Yen ST (1969) Inheritance of grain dormancy in four rice crosses. Bot Bull Acad Sin 10:1–8Google Scholar
  8. Chen CX, Cai SB, Bai GH (2008) A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Mol Breed 21:351–358. doi: 10.1007/s11032-007-9135-5 CrossRefGoogle Scholar
  9. Dong YJ, Tsuzuki E, Kamiunten H et al (2003) Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice (Oryza sativa L.). Field Crops Res 81:133–139. doi: 10.1016/S0378-4290(02)00217-4 CrossRefGoogle Scholar
  10. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  11. Flintham J, Adlam R, Bassoi M et al (2002) Mapping genes for resistance to sprouting damage in wheat. Euphytica 126:39–45. doi: 10.1023/A:1019632008244 CrossRefGoogle Scholar
  12. Gale MD, Flintham JE, Devos KM (2002) Cereal comparative genetics and preharvest sprouting. Euphytica 126:21–25. doi: 10.1023/A:1019675723265 CrossRefGoogle Scholar
  13. Gao W, Clancy JA, Han F et al (2003) Molecular dissection of a dormancy QTL region near the chromosome 7 (5H) L telomere in barley. Theor Appl Genet 107:552–559. doi: 10.1007/s00122-003-1281-5 PubMedCrossRefGoogle Scholar
  14. Groos C, Gay G, Perretant MR et al (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a whitexred grain bread-wheat cross. Theor Appl Genet 104:39–47. doi: 10.1007/s001220200004 PubMedCrossRefGoogle Scholar
  15. Gu XY, Kianian SF, Foley ME (2004) Multiple loci and epistases control genetic variation for seed dormancy in weedy rice (Oryza sativa). Genetics 166:1503–1516. doi: 10.1534/genetics.166.3.1503 PubMedCrossRefGoogle Scholar
  16. Gu XY, Kianian SF, Foley ME (2005) Seed dormancy imposed by covering tissues interrelates to shattering and seed morphological characteristics in weedy rice. Crop Sci 45:948–955. doi: 10.2135/cropsci2004.0339 CrossRefGoogle Scholar
  17. Gu XY, Kianian SF, Foley ME (2006) Dormancy genes from weedy rice respond divergently to seed development environments. Genetics 172:1199–1211. doi: 10.1534/genetics.105.049155 PubMedCrossRefGoogle Scholar
  18. Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187. doi: 10.1016/j.pbi.2005.01.011 PubMedCrossRefGoogle Scholar
  19. Guo LB, Zhu LH, Xu YB et al (2004) QTL analysis of seed dormancy in rice (Oryza sativa L.). Euphytica 140:155–162. doi: 10.1007/s10681-004-2293-1 CrossRefGoogle Scholar
  20. Han F, Ullrich SE, Clancy JA et al (1999) Inheritance and fine mapping of a major barley seed dormancy QTL. Plant Sci 143:113–118. doi: 10.1016/S0168-9452(99)00028-X CrossRefGoogle Scholar
  21. Hori K, Sato K, Takeda K (2007) Detection of seed dormancy QTL in multiple mapping populations derived from crosses involving novel barley germplasm. Theor Appl Genet 115:869–876PubMedCrossRefGoogle Scholar
  22. Humphreys DG, Noll J (2002) Methods for characterization of preharvest sprouting resistance in a wheat breeding program. Euphytica 126:61–65. doi: 10.1023/A:1019671622356 CrossRefGoogle Scholar
  23. Kato K, Nakamura W, Tabiki T et al (2001) Detection of loci controlling seed dormancy on group 4 chromosomes of wheat and comparative mapping with rice and barley genomes. Theor Appl Genet 102:980–985. doi: 10.1007/s001220000494 CrossRefGoogle Scholar
  24. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  25. Kottearachchi NS, Uchino N, Kato K et al (2006) Increased grain dormancy in white-grained wheat by introgression of preharvest sprouting tolerance QTLs. Euphytica 152:421–428. doi: 10.1007/s10681-006-9231-3 CrossRefGoogle Scholar
  26. Kulwal PL, Singh R, Balyan HS et al (2004) Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Funct Integr Genomics 4:94–101. doi: 10.1007/s10142-004-0105-2 PubMedCrossRefGoogle Scholar
  27. Kulwal PL, Kumar N, Gaur A et al (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059. doi: 10.1007/s00122-005-0021-4 PubMedCrossRefGoogle Scholar
  28. Li CD, Tarr A, Lance RCM et al (2003) A major QTL controlling seed dormancy and pre-harvest sprouting/grain alpha-amylase in two-rowed barley (Hordeum vulgare L.). Aust J Agric Res 54:1303–1313. doi: 10.1071/AR02210 CrossRefGoogle Scholar
  29. Li C, Ni P, Francki M et al (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genomics 4:84–93. doi: 10.1007/s10142-004-0104-3 PubMedCrossRefGoogle Scholar
  30. Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003. doi: 10.1007/s001220050831 CrossRefGoogle Scholar
  31. Lincoln S, Daly M, Lander E (1992) Constructing genetic maps with MAPMAKER/EXP 3.0, 3rd edn. Whitehead Institute Technical report, Whitehead Institue, CambridgeGoogle Scholar
  32. Liu RH, Meng JL (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (Beijing) 25:317–321Google Scholar
  33. Lowe A, Moule C, Trick M et al (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112. doi: 10.1007/s00122-003-1522-7 PubMedCrossRefGoogle Scholar
  34. Lu G, Yang G, Fu T (2004) Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant Breed 123:262–265. doi: 10.1111/j.1439-0523.2004.00957.x CrossRefGoogle Scholar
  35. Mares D, Mrva K, Cheong J et al (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor Appl Genet 111:1357–1364. doi: 10.1007/s00122-005-0065-5 PubMedCrossRefGoogle Scholar
  36. McCouch SR, Cho YG, Yano M et al (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13Google Scholar
  37. Mori M, Uchino N, Chono M et al (2005) Mapping QTLs for grain dormancy on wheat chromosome 3A and the group 4 chromosomes, and their combined effect. Theor Appl Genet 110:1315–1323. doi: 10.1007/s00122-005-1972-1 PubMedCrossRefGoogle Scholar
  38. Noda K, Matsuura T, Maekawa M et al (2002) Chromosomes responsible for sensitivity of embryo to abscisic acid and dormancy in wheat. Euphytica 123:203–209. doi: 10.1023/A:1014948712848 CrossRefGoogle Scholar
  39. Ogbonnaya FC, Imtiaz M, DePauw RM (2007) Haplotype diversity of preharvest sprouting QTLs in wheat. Genome 50:107–118. doi: 10.1139/G06-142 PubMedCrossRefGoogle Scholar
  40. Ogbonnaya FC, Imtiaz M, Ye G et al (2008) Genetic and QTL analyses of seed dormancy and preharvest sprouting resistance in the wheat germplasm CN10955. Theor Appl Genet 116:891–902. doi: 10.1007/s00122-008-0712-8 PubMedCrossRefGoogle Scholar
  41. Piquemal J, Cinquin E, Couton F et al (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523. doi: 10.1007/s00122-005-0080-6 PubMedCrossRefGoogle Scholar
  42. Prada D, Ullrich S, Molina-Cano J et al (2004) Genetic control of dormancy in a Triumph/Morex cross in barley. Theor Appl Genet 109:62–70. doi: 10.1007/s00122-004-1608-x PubMedCrossRefGoogle Scholar
  43. Prada D, Romagosa I, Ullrich SE et al (2005) A centromeric region on chromosome 6(6H) affects dormancy in an induced mutant in barley. J Exp Bot 56:47–54PubMedGoogle Scholar
  44. Qiu D, Morgan C, Shi J et al (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80. doi: 10.1007/s00122-006-0411-2 PubMedCrossRefGoogle Scholar
  45. Romagosa I, Han F, Clancy JA et al (1999) Individual locus effects on dormancy during seed development and after ripening in barley. Crop Sci 39:74–79Google Scholar
  46. Ruan SL, Duan XM, Hu WM (2000) Occurrence of seed vivipary in hybrid rape (Brassica napus L.) and its effect on seed quality. J Zhejiang Univ (Agric & Life Sci) 26:573–578Google Scholar
  47. Stuber CW, MDa Edwards, Wendel JF (1987) Molecular marker-facilitated investigations of quantitative trait loci in maize.II. Factors influencing yield and its component traits. Crop Sci 27:639–648Google Scholar
  48. Sun ZD, Wang ZN, Tu JX et al (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317. doi: 10.1007/s00122-006-0483-z PubMedCrossRefGoogle Scholar
  49. Tan MK, Sharp PJ, Lu MQ et al (2006) Genetics of grain dormancy in a white wheat. Aust J Agric Res 57:1157–1165. doi: 10.1071/AR06101 CrossRefGoogle Scholar
  50. Torada A, Ikeguchi S, Koike M (2005) Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica 143:251–255. doi: 10.1007/s10681-005-7872-2 CrossRefGoogle Scholar
  51. Ullrich SE, Hayes PM, Dyer WE et al (1993) Quantitative trait locus analysis of seed dormancy in ‘Steptoe’barley. Pre-harvest sprouting in cereals. In: Walker-Simmons MK, Reid JL (eds) Preharvest sprouting in cereals 1992. American Association of Cereal Chemist, St. Paul, MN, USA, pp 136–145Google Scholar
  52. Ullrich S, Clancy J, del Blanco I et al (2008) Genetic analysis of preharvest sprouting in a six-row barley cross. Mol Breed 21:249–259. doi: 10.1007/s11032-007-9125-7 CrossRefGoogle Scholar
  53. van Der Schaar W, Alonso-Blanco C, Leon-Kloosterziel KM et al (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79:190–200. doi: 10.1038/hdy.1997.142 CrossRefGoogle Scholar
  54. Vanhala T, Stam P (2006) Quantitative trait loci for seed dormancy in wild barley (Hordeum spontaneum C. Koch). Genet Resour Crop Evol 53:1013–1019. doi: 10.1007/s10722-004-7368-2 CrossRefGoogle Scholar
  55. Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi: 10.1093/nar/23.21.4407 PubMedCrossRefGoogle Scholar
  56. Wan JM, Cao YJ, Wang CM et al (2005) Quantitative trait loci associated with seed dormancy in rice. Crop Sci 45:712–716Google Scholar
  57. Wan JM, Jiang L, Tang JY et al (2006) Genetic dissection of the seed dormancy trait in cultivated rice (Oryza sativa L.). Plant Sci 170:786–792. doi: 10.1016/j.plantsci.2005.11.011 CrossRefGoogle Scholar
  58. Wang DL, Zhu J, Li ZKL et al (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264. doi: 10.1007/s001220051331 CrossRefGoogle Scholar
  59. Wang S, Basten CJ, Zeng Z-B (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC.
  60. Zanetti S, Winzeler M, Keller M et al (2000) Genetic analysis of pre-harvest sprouting resistance in a wheat × spelt cross. Crop Sci 40:1406–1417CrossRefGoogle Scholar
  61. Zhang X-Q, Li C, Tay A et al (2008) A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (Triticum aestivum L.). Mol Breed 22:227–236. doi: 10.1007/s11032-008-9169-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Faqiang Feng
    • 1
  • Pingwu Liu
    • 1
  • Dengfeng Hong
    • 1
  • Guangsheng Yang
    • 1
  1. 1.National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations