, Volume 167, Issue 3, pp 381–396 | Cite as

Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes

  • George S. Mahuku
  • Ángela Maria Iglesias
  • Carlos Jara


Angular leaf spot (ALS), caused by the fungus Phaeoisariopsis griseola is an economically important and widely distributed disease of common bean. Due to the co-evolution of P. griseola with the large and small seeded bean gene pools, stacking Andean and Mesoamerican resistance genes is a strategy most likely to provide lasting resistance to ALS disease. This strategy requires identification and characterization of effective Andean and Mesoamerican resistance genes, and the development of molecular markers linked to these genes. This study was conducted to elucidate the genetics of ALS resistance in the Andean accession G5686 using an F2 population derived from a G5686 × Sprite cross. Segregation analysis revealed that three dominant and complementary genes conditioned resistance of G5686 to P. griseola pathotype 31-0. Three microsatellite markers, Pv-ag004, Pv-at007 and Pv-ctt001 segregated in coupling phase with the resistance genes in G5686. Microsatellites Pv-ag004 and Pv-ctt001, located on opposite ends of linkage group B04 segregated with resistance genes Phg G5686A , Phg G5686B at 0.0 and 17.1 cM, respectively, while marker Pv-at007, localized on linkage group B09 segregated with resistance gene Phg G5686C at 12.1 cM. Parental surveys showed that these markers were polymorphic in Andean and Mesoamerican backgrounds. The usefulness of G5686 ALS resistance genes in managing the ALS disease, and the potential utility of identified molecular markers for marker assisted breeding are discussed.


Angular leaf spot Phaeoisariopsis griseola Microsatellites Andean bean accession 



We are grateful to Jorge Fory for greenhouse operations, Guillermo Castellanos for maintaining the isolates and inoculum production, Juan Cuasquer for statistical analysis, María del Carmen Hernadez for technical assistance. We are thankful to Drs. Steve Beebe and R. Ortiz for critically reviewing this manuscript. This project was supported in part by the Rockefeller Foundation grant on Genetic Improvement of Bush and Climbing Beans.


  1. Beebe SE, Pastor-Corrales MA (1991) Breeding for disease resistance. In: van Schoonhoven A, Voysest O (eds) Common bean, research for crop improvement. CIAT, Cali, pp 561–618Google Scholar
  2. Blair MW, Pedraza F, Buendía HF, Gaitan-Solis E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374. doi: 10.1007/s00122-003-1398-6 PubMedCrossRefGoogle Scholar
  3. Bowers JE, Dangl GS, Vignani R, Meredith CP (1996) Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.). Genome 39:628–633. doi: 10.1139/g96-080 PubMedCrossRefGoogle Scholar
  4. Busogoro JP, Jijakli MH, Lepoivre P (1999) Virulence variation and RAPD polymorphism in African isolates of Phaeoisariopsis griseola (Sacc.) Ferr., the causal agent of angular leaf spot of common bean. Eur J Plant Pathol 105:559–569. doi: 10.1023/A:1008707101645 CrossRefGoogle Scholar
  5. Caixeta EF, Borém A, Alzate-Marin AL, De Azevedo Fagundes S, De Morais Silva MG, de Barros EG, Moreira MA (2005) Allelic relationships for genes that confer resistance to angular leaf spot in common bean. Euphytica 145:237–245. doi: 10.1007/s10681-005-1258-3 CrossRefGoogle Scholar
  6. Carvalho GA, Paula TJ, Alzate-Marin AL, Nietsche S, de Barros EG, Moreira MA (1998) Inheritance of resistance to angular leaf spot of common bean in AND 277 to race 63–23 of Phaeoisariopsis griseola and identification of a RAPD marker linked to the resistance gene. Fitopatol Bras 23:482–485Google Scholar
  7. Crispin A, Sifuentes JA, Avila JC (1976) Enfermedades y plagas del fríjol en Mexico. Folleto de divulgación no. 39. Ed. rev. Instituto Nacional de Investigaciones Agrícolas, Secretaria de Agricultura y Ganadería, Mexico, pp 15–16Google Scholar
  8. FAO (2007) FAO statistics. Available via DIALOG. Accessed 15 Jan 2008
  9. Ferreira da Silva G, Bosco dos Santos J, Patto Ramalho MA (2003) Identification of SSR and RAPD markers linked to a resistance allele for angular leaf spot in common bean (Phaseolus vulgaris L.) line ESAL 550. Genet Mol Biol 26:459–463Google Scholar
  10. Guzmán P, Gilbertson RL, Nodari R, Johnson WC, Temple SR, Madela D, Mkandawire ABC, Gepts P (1995) Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85:600–607. doi: 10.1094/Phyto-85-600 CrossRefGoogle Scholar
  11. Jara CE (2002) Herencia de la resistencia a Phaeoisariopsis griseola, agente causal de la mancha angular en genotipos G 19833 (Andino) y DOR 364. (Mesoamerican). M.Sc. thesis, Universidad Nacional de Colombia, Palmira, ColombiaGoogle Scholar
  12. Kelly JD (1995) Use of random amplified polymorphic DNA markers in breeding for major gene resistance to plant pathogens. HortSci 30:461–465Google Scholar
  13. Kelly JD, Miklas PN (1999) Marker assisted selection. In: Singh SP (ed) Common bean improvement in the twenty-first century. Kluwer, Dordrecht, pp 93–123Google Scholar
  14. Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortSci 39(6):1196–1207Google Scholar
  15. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1(2):174–181. doi: 10.1016/0888-7543(87)90010-3 PubMedCrossRefGoogle Scholar
  16. Liebenberg MM, Pretorius ZA (1997) A review of angular leaf spot of common bean (Phaseolus vulgaris L.). Afr Plant Prot 3(2):81–106Google Scholar
  17. López CE, Acosta I, Jara C, Pedraza F, Gaitán E, Gallego G, Beebe S, Tohme J (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95. doi: 10.1094/PHYTO.2003.93.1.88 PubMedCrossRefGoogle Scholar
  18. Mahuku GS (2004) A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Mol Biol Rep 22:71–81. doi: 10.1007/BF02773351 CrossRefGoogle Scholar
  19. Mahuku GS, Riascos JJ (2004) Virulence and molecular diversity within Colletotrichum lindemuthianum isolates from Andean and Mesoamerican bean varieties and regions. Eur J Plant Pathol 110:253–263. doi: 10.1023/B:EJPP.0000019795.18984.74 CrossRefGoogle Scholar
  20. Mahuku GS, Jara C, Cuasquer JB, Castellanos G (2002) Genetic variability within Phaeoisariopsis griseola from Central America and its implications for resistance breeding of common bean. Plant Pathol 51:594–604. doi: 10.1046/j.1365-3059.2002.00742.x CrossRefGoogle Scholar
  21. Mahuku GS, Jara C, Cajiao C, Beebe S (2003) Sources of resistance to angular leaf spot in (Phaeoisariopsis griseola) common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica 130:303–313. doi: 10.1023/A:1023095531683 CrossRefGoogle Scholar
  22. Mahuku GS, Montoya C, Henríquez MA, Jara C, Teran H, Beebe S (2004) Inheritance and characterization of the angular leaf spot resistance gene in the common bean accession, G 10474 and identification of an AFLP marker linked to the resistance gene. Crop Sci 44:1817–1824CrossRefGoogle Scholar
  23. Miklas PN (2002) Marker assisted selection for disease resistance in common bean. Annu Rep Bean Improv Coop 45:1–3Google Scholar
  24. Miklas PN (2005) DNA markers (SCAR) linked with disease resistance traits in bean (Phaseolus vulgaris). Updated: 8/30/05. Available via DIALOG. Accessed 15 June 2008
  25. Miklas PN, Stavely JR, Kelly JD (1993) Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85:745–749. doi: 10.1007/BF00225014 CrossRefGoogle Scholar
  26. Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131. doi: 10.1007/s10681-006-4600-5 CrossRefGoogle Scholar
  27. Pastor-Corrales MA, Jara CE (1995) La evolución de Phaeoisariopsis griseola con el fríjol común en América Latina. Fitopatol Colomb 19:15–24Google Scholar
  28. Pastor-Corrales MA, Jara C, Singh SP (1998) Pathogenic variation in, source of, and breeding for resistance to Phaeoisariopsis griseola causing angular leaf spot in common bean. Euphytica 103:161–171. doi: 10.1023/A:1018350826591 CrossRefGoogle Scholar
  29. Picca A, Helguera M, Salomón N, Carrera A (2004) Marcadores moleculares. In: Echenique V, Rubinstein C, Mroginsky L (eds) Biotecnología y Mejoramiento Vegetal. INTA, Buenos Aires, pp 61–68Google Scholar
  30. Ravas-Seijas CA, Sartorato A, de Carvalho JR (1985) Yield losses in dry vean (Phaseolus vulgaris L.) caused by angular leaf spot (Isariopsis griseola Sacc.). Annu Rep Bean Improv Coop 28:5–6Google Scholar
  31. Saettler AW (1991) Angular leaf spot. In: Hall R (ed) Compendium of bean diseases. APS, St. Paul, pp 15–16Google Scholar
  32. Schwartz HF, Correa-Victoria F, Pineda PA, Otoya MM, Katherman MJ (1981) Dry bean yield losses caused by Aschochyta, angular, and white leaf spots in Colombia. Plant Dis 65:494–496Google Scholar
  33. Stavely JR (1983) A rapid technique for inoculation of Phaseolus vulgaris with multiple pathotypes of Uromyces phaseoli. Phytopathology 73:676–679. doi: 10.1094/Phyto-73-676 CrossRefGoogle Scholar
  34. Stenglein S, Ploper LD, Vizgarra O, Balatti P (2003) Angular leaf spot: a disease caused by the fungus Phaeiosariopsis griseola (Sacc.) Ferraris on Phaseolus vulgaris L. Adv Appl Microbiol 52:209–243. doi: 10.1016/S0065-2164(03)01009-8 PubMedCrossRefGoogle Scholar
  35. Van Schoonhoven A, Pastor-Corrales MA (1987) Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical, CaliGoogle Scholar
  36. Voysest O (2000) Mejoramiento Genético del fríjol (Phaseolus vulgaris L.). CIAT, Colombia (195 p)Google Scholar
  37. Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa. CIAT, CaliGoogle Scholar
  38. Yu K, Park SJ, Poysa V (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434. doi: 10.1093/jhered/91.6.429 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • George S. Mahuku
    • 1
  • Ángela Maria Iglesias
    • 2
  • Carlos Jara
    • 3
  1. 1.Centro Internacional de Maíz y Trigo (CIMMYT)TexcocoMéxico
  2. 2.Universidad del ValleCaliColombia
  3. 3.Centro Internacional de Agricultura Tropical (CIAT)CaliColombia

Personalised recommendations