, Volume 166, Issue 2, pp 269–276 | Cite as

Field performance of new in vitro androgenesis-derived double haploids of barley

  • Luz Rayda Gomez-Pando
  • Jorge Jimenez-Davalos
  • Ana Eguiluz- de la Barra
  • Enrique Aguilar-Castellanos
  • Jose Falconí-Palomino
  • Martha Ibañez-Tremolada
  • Mario Varela
  • José Carlos Lorenzo


Although barley is extensively grown in the Peruvian highlands as a food crop, agricultural and quality performance have historically been poor. A double-haploid technique was used to obtain barley varieties better suited to this environment. Three crosses were constructed: Ya/LM94, B16/LM94 and B12/LM94. From all crosses, F1 anthers were cultured in vitro to produce double-haploid lines. At DH6, promising materials were evaluated in the Peruvian highlands, along with their parents and two commercial controls (PPch, UNA80). Expert agronomic criteria for the ideal barley cultivar for this region were defined and Euclidean distance was used for simultaneous selection of the recorded agricultural traits. Ya/LM94-PC27 exhibited the shortest Euclidean distance to the expert criteria (0.41), higher yield than controls, and low plant height. Periods from first rain to flowering and maturity suited growth during the rainy season. Ya/LM94-PC27 was resistant to stripe rust, and its grain protein content suited the malting-brewing industry. Hectoliter and 1,000-grain masses met or surpassed industry requirements.


Anther in vitro culture Breeding Double haploid Hordeum vulgare L. 



UNALM94 (Peruvian commercial variety)


Yanamuclo 87 (Peruvian commercial variety)


Peruvian commercial variety


Puca Poncho (Peruvian commercial variety)


B-1602 (Foreign commercial variety)


B-1205 (Foreign commercial variety)


Double haploid


Cereal Program



This research was supported by the Backus Foundation and the International Atomic Energy Agency (IAEA), through the research project: Barley Genetic and Agronomic Improvement for the Highland of Peru. We are grateful to Mr. Hugo Ccente, Mr. Vicente Trinidad and Mr. Cesar Inga for their excellent technical assistance. We thank Mrs. Camille Vainstein for professional language editing of the manuscript.


  1. Bhatty RS (1993) Non-malting uses of barley. In: McGregor AW, Bhatty RS (eds) Barley: chemistry and technology. American association of cereal chemists. St. Paul, Minnesota, pp 355–417Google Scholar
  2. Cai Q, Szarejko I, Polok K et al (1992) The effect of sugars and growth regulators on embryoid formation and plant regeneration from barley anther culture. Plant Breed 109:218–226. doi: 10.1111/j.1439-0523.1992.tb00176.x CrossRefGoogle Scholar
  3. Ceccarelli S, Grando S, Impiglia A (1998) Choice of selection strategy in breeding barley for stress environments. Euphytica 103:307–318. doi: 10.1023/A:1018647001429 CrossRefGoogle Scholar
  4. Ceccarelli S, Grando S, Tutwiler R et al (2000) A methodological study on participatory barley breeding I. selection phase. Euphytica 111:91–104. doi: 10.1023/A:1003717303869 CrossRefGoogle Scholar
  5. Choo T, Kotecha A, Reinbergs E et al (1986) Diallel analysis of grain yield in barley using doubled haploid lines. Plant Breed 97:129–137. doi: 10.1111/j.1439-0523.1986.tb01044.x CrossRefGoogle Scholar
  6. Chrispeels M, Sadava D (2003) Development, productivity, and sustainability of crop production. In: Chrispeels MJ, Sadava D (eds) Plants, genes and crop biotechnology. Jones and Bartlett Publishers Inc., Sudbury, pp 52–75Google Scholar
  7. FAOSTAT (2008) Available via food agricultural organization. Accessed 18 April 2008
  8. Gonzalez-Melendi P, Ramirez C, Testillano P et al (2005) Three dimensional confocal and electron microscopy imaging define the dynamics and mechanisms of diploidization at early stages of barley microspora-derived embryogenesis. Planta 222:47–57. doi: 10.1007/s00425-005-1515-7 CrossRefPubMedGoogle Scholar
  9. Granahan J, Sweet J (2001) An evaluation of atmospheric correction techniques using the spectral similarity scale. IEEE 5:2022–2024Google Scholar
  10. Ichino M (1988) General metrics for mixed features—the cartesian space theory for pattern recognition. IEEE 1:494–497Google Scholar
  11. IPGRI (1994) Descriptors for barley (Hordeum vulgare L.). In: IPGRI (ed). International Plant Genetic Resources Institute, Rome, pp 1–46Google Scholar
  12. Jafar M, Zilouchian A (2001) Application of soft computing for desalination technology. In: Zilouchian A, Jamshidi M (eds) Intelligent control systems using soft computing methodologies. CRC Press, Boca Raton, pp 315–353Google Scholar
  13. Jensen N (1988) Breeding and selection methods; double haploid method. Plant breeding methodology. Wiley, New York, pp 15–62Google Scholar
  14. Kantardzic M (2003) Data mining: concepts, models, methods, and algorithms, vol 1. Wiley, New JerseyGoogle Scholar
  15. Kasha K, Hu T, Oro R et al (2001a) Nuclear fusion leads to chromosome doubling during mannitol pretreatment of barley (Hordeum vulgare L.) microspores. J Exp Bot 52:1227–1238. doi: 10.1093/jexbot/52.359.1227 CrossRefPubMedGoogle Scholar
  16. Kasha K, Simion E, Oro R et al (2001b) An improved in vitro technique for isolated microspore culture of barley. Euphytica 120:379–385. doi: 10.1023/A:1017564100823 CrossRefGoogle Scholar
  17. Kogan J (2007) Introduction to clustering large and high-dimensional data, vol 1. Cambridge University Press, New YorkGoogle Scholar
  18. Maluszynski M, Kasha K, Szarejko I (2003) Published doubled haploid protocols in plant species. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 309–335Google Scholar
  19. MINAG (2007) Available via peruvian ministry of agriculture. Accessed 7 March 2007
  20. Ortiz R, Nurminiemi M, Madsen S et al (2002) Genetic gains in Nordic spring barley breeding over 60 years. Euphytica 126:283–289. doi: 10.1023/A:1016302626527 CrossRefGoogle Scholar
  21. Palmer C, Keller W (2005) Overview of haploidy: haploids in crop improvement II. Biotechnol Agric For 56:1–7Google Scholar
  22. Roelfs A, Singh R, Saari E (1992) Wheat rusts: concepts and methods to manage them. CIMMYT, Ciudad México, pp 1–81Google Scholar
  23. Romero M, Gómez L (1996) Barley growth in Peru. Boletín de Difusión No 1 Universidad Nacional Agraria de La Molina-Maltería Lima, SA. UNALM-Maltería Lima S.A, Lima, pp 1–43Google Scholar
  24. Shim Y, Kasha K, Simion E et al (2006) The relationship between induction of embryogenesis and chromosome doubling in microspore cultures. Protoplasma 228:79–86. doi: 10.1007/s00709-006-0177-z CrossRefPubMedGoogle Scholar
  25. Surma M (1996) Biometric analysis of quantitative traits in hybrids and doubled-haploid lines of spring barley. Series: dissertations and monographs III. Instytut Genetyki Roslin PAN, Poznan, pp 1–110Google Scholar
  26. Szarejko I (2003) Anther culture for doubled haploid production in barley (Hordeum vulgare L.). In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 35–42Google Scholar
  27. Szarejko I, Kasha K (1991) Induction of anther culture derived doubled haploids in barley. Cereal Res Commun 19:219–237Google Scholar
  28. Tavazoie S, Hughes J, Campbell M et al (1999) Systematic determination of genetic network architecture. Nat Genet 22:281–285. doi: 10.1038/10343 CrossRefPubMedGoogle Scholar
  29. Testillano P, Georgiev S, Mogensen H et al (2004) Spontaneous chromosome doubling results from nuclear fusion during in vitro maize induced microspore embryogenesis. Chromosoma 112:342–349. doi: 10.1007/s00412-004-0279-3 CrossRefPubMedGoogle Scholar
  30. Thomas W (2002) Molecular marker-assisted versus conventional selection in barley breeding. In: Slafer GA, Molina-Cano J, Savin R, Araus J, Romagosa I (eds) Barley science: recent advances from molecular biology to agronomy new views on the origin of cultivated barley. The Haworth Press Inc., New York, pp 177–204Google Scholar
  31. Thomas W, Forster B, Gertsson B (2003) Doubled haploids in breeding. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants: a manual. Kluwer Academic Publishers, Dordrecht, pp 337–349Google Scholar
  32. Toojinda T, Broers L, Chen X et al (2000) Mapping quantitative and qualitative disease resistance genes in doubled haploid population barley (Hordeum vulgare). Theor Appl Genet 101:580–589. doi: 10.1007/s001220051519 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Luz Rayda Gomez-Pando
    • 1
  • Jorge Jimenez-Davalos
    • 1
  • Ana Eguiluz- de la Barra
    • 1
  • Enrique Aguilar-Castellanos
    • 1
  • Jose Falconí-Palomino
    • 1
  • Martha Ibañez-Tremolada
    • 1
  • Mario Varela
    • 2
  • José Carlos Lorenzo
    • 3
  1. 1.Cereal Research ProgramNational Agricultural University La MolinaLimaPeru
  2. 2.National Institute for Agricultural Sciences (INCA)San José de las LajasCuba
  3. 3.Laboratory for Plant Breeding, Bioplant CenterUniversity of Ciego de AvilaCiego de AvilaCuba

Personalised recommendations