Skip to main content
Log in

A quantitative trait locus on chromosome 5B controls resistance of Triticum turgidum (L.) var. diccocoides to Stagonospora nodorum blotch

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Stagonospora nodorum blotch (SNB) is an important foliar disease of durum wheat (Triticum turgidum var. durum) worldwide. The combined effects of SNB and tan spot, considered as components of the leaf spotting disease complex, result in significant damage to wheat production in the northern Great Plains of North America. The main objective of this study was the genetic analysis of resistance to SNB caused by Phaeosphaeria nodorum in tetraploid wheat, and its association with tan spot caused by Pyrenophora tritici-repentis race 2. The 133 recombinant inbred chromosome lines (RICL) developed from the cross LDN/LDN(Dic-5B) were evaluated for SNB reaction at the seedling stage under greenhouse conditions. Molecular markers were used to map a quantitative trait locus (QTL) on chromosome 5B, explaining 37.6% of the phenotypic variation in SNB reaction. The location of the QTL was 8.8 cM distal to the tsn1 locus coding for resistance to P. tritici-repentis race 2. The presence of genes for resistance to both SNB and tan spot in close proximity in tetraploid wheat and the identification of molecular markers linked to these genes or QTLs will be useful for incorporating resistance to these diseases in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B, Zanetti S, Messmer MM (2005) Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 111:325–336. doi:10.1007/s00122-005-2025-5

    Article  PubMed  CAS  Google Scholar 

  • Ali S, Adhikari TB (2008) Variation in aggressiveness of Stagonospora nodorum isolates from North Dakota. J Phytopathol 156:140–145. doi:10.1111/j.1439-0434.2007.01358.x

    Article  Google Scholar 

  • Ali S, Singh PK, McMullen MP, Mergoum M, Adhikari TB (2008) Identification of new sources of resistance to multiple leaf spotting diseases in wheat germplasm. Euphytica 159:167–179. doi:10.1007/s10681-007-9469-4

    Article  Google Scholar 

  • Arseniuk E, Stefanowska G, Czembor HJ (1999) Analysis of resistance to Stagonospora nodorum blotch in hybrids of Aegilops spp. with durum (Triticum durum) and bread (T. aestivum) wheat. Plant Breed Seed Sci 43:12–24

    Google Scholar 

  • Arseniuk E, Czembor P, Czaplicki A, Song Q, Cregan PB, Hoffman D, Ueng PP (2004) QTL controlling partial resistance to Stagonospora nodorum leaf blotch in winter wheat cultivar Alba. Euphytica 137:225–231. doi:10.1023/B:EUPH.0000041589.47544.de

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83. doi:10.1016/0003-2697(91)90120-I

    Article  PubMed  CAS  Google Scholar 

  • Bostwick DE, Ohm HW, Shaner G (1993) Inheritance of Septoria glume blotch resistance in wheat. Crop Sci 33:439–443

    Google Scholar 

  • Chee PW, Elias EM, Anderson JA, Kianian SF (2001) Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Sci 41:295–301

    CAS  Google Scholar 

  • Czembor PC, Arseniuk E, Czaplicki A, Song Q, Cregan PB, Ueng PP (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46:546–554. doi:10.1139/g03-036

    Article  PubMed  CAS  Google Scholar 

  • De Wolf ED, Effertz RJ, Ali S, Francl LJ (1998) Vistas of tan spot research. Can J Plant Pathol 20:349–370

    Google Scholar 

  • Del Blanco IA, Frohberg RC, Stack RW, Berzonsky WA, Kianian SF (2003) Detection of QTL linked to Fusarium head blight resistance in Sumai 3-derived North Dakota bread wheat lines. Theor Appl Genet 106:1027–1031

    PubMed  Google Scholar 

  • Du CG, Nelson LR, McDaniel ME (1999) Diallel analysis of gene effects conditioning resistance to Stagonospora nodorum (Berk.) in wheat. Crop Sci 39:686–690

    Google Scholar 

  • Ecker R, Dinoor A, Cahaner A (1989) The inheritance of resistance to Septoria glume blotch. I. common bread wheat, Triticum aestivum. Plant Breed 102:113–121. doi:10.1111/j.1439-0523.1989.tb00324.x

    Article  Google Scholar 

  • Feng J, Ma H, Hughes GR (2004) Genetics of resistance to Stagonospora nodorum blotch of hexaploid wheat. Crop Sci 44:2043–2048

    Google Scholar 

  • Fernandez MR, McConkey BG, Zentner RP (1998) Tillage and summer fallow effects on leaf spot diseases of wheat in the semiarid Canadian prairies. Can J Plant Pathol 20:376–379

    Google Scholar 

  • Fried PM, Meister E (1987) Inheritance of leaf and head resistance of winter wheat to Septoria nodorum in a diallel cross. Phytopathology 77:1371–1375. doi:10.1094/Phyto-77-1371

    Article  Google Scholar 

  • Gilbert J, Woods SM (2001) Leaf spot diseases of spring wheat in southern Manitoba farms fields under conventional and conservation tillage. Can J Plant Sci 81:551–559

    Google Scholar 

  • Gonzalez-Hernandez JL, Elias EM, Kianian SF (2004) Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225. doi:10.1007/s10681-004-3157-4

    Article  CAS  Google Scholar 

  • Hu XY, Bostwick D, Sharma H, Ohm H, Shaner G (1996) Chromosome and chromosomal arm locations of genes for resistance to Septoria glume blotch in wheat cultivar Cotipora. Euphytica 91:251–257

    Google Scholar 

  • Joppa LR (1993) Chromosome engineering in tetraploid wheat. Crop Sci 33:908–913

    Google Scholar 

  • Joppa LR, Williams ND (1988) Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30:222–228

    Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GH (1997) Mapping gene(s) for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbreed chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • King JE, Jenkins JEE, Morgan WA (1983) The estimation of yield losses in wheat from severity of infection by Septoria species. Plant Pathol 32:239–249. doi:10.1111/j.1365-3059.1983.tb02831.x

    Article  Google Scholar 

  • Kleijer G, Bronnimann A, Fossati A (1977) Chromosomal location of a dominant gene for resistance to at the seedling stage to Septoria nodorum Berk. In the winter wheat variety Atlas 66. Z Pflanzenzuecht 78:170–173

    Google Scholar 

  • Krupinsky JM (1997) Aggressiveness of Stagonospora nodorum isolates obtained from wheat in the northern Great Plains. Plant Dis 81:1027–1031. doi:10.1094/PDIS.1997.81.9.1027

    Article  Google Scholar 

  • Lee TS, Gough FJ (1984) Inheritance of Septoria leaf blotch (S. tritici) and Pyrenophora tan spot (P. tritici-repentis) resistance in Triticum aestivum cv. Carifen 12. Plant Dis 68:848–851. doi:10.1094/PD-69-848

    Article  Google Scholar 

  • Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL (2004a) Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94:1056–1060. doi:10.1094/PHYTO.2004.94.10.1056

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Friesen TL, Rasmussen JB, Ali S, Meinhardt SW, Faris JD (2004b) Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061–1067. doi:10.1094/PHYTO.2004.94.10.1061

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB, Faris JD (2006) The Tsn1–ToxA interaction in the wheat-Stagonospora nodorum path system parallels that of the wheat-tan spot system. Genome 49:1265–1273. doi:10.1139/G06-088

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Hughes GR (1995) Genetic control and chromosomal location of Triticum timopheevii-derived resistance to Septoria nodorum blotch in durum wheat. Genome 38:332–338. doi:10.1139/g95-042

    Article  PubMed  CAS  Google Scholar 

  • Manly K, Cudmore J, Meer J (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932. doi:10.1007/s00335-001-1016-3

    Article  PubMed  CAS  Google Scholar 

  • McKendry AL, Henke GE, Finney PL (1995) Effects of Septoria leaf blotch on soft red winter wheat milling and baking quality. Cereal Chem 72:142–146

    CAS  Google Scholar 

  • Mergoum M, Singh PK, Ali S, Elias EM, Anderson JA, Glover KD, Adhikari TB (2007) Reaction of elite wheat genotypes from the northern Great Plains of North America to Septoria diseases. Plant Dis 91:1310–1315. doi:10.1094/PDIS-91-10-1310

    Article  Google Scholar 

  • Murphy NEA, Loughman R, Wilson R, Lagudah ES, Appels R, Jones MGK (2000) Resistance to Septoria nodorum blotch in the Aegilops tauschii accession RL5271 is controlled by a single gene. Euphytica 113:227–233. doi:10.1023/A:1003981525052

    Article  CAS  Google Scholar 

  • Nelson LR, Gates CE (1980) Inheritance of resistance to Septoria nodorum in wheat. Crop Sci 20:447–449

    Google Scholar 

  • Nelson JC, Sorrells ME, Van Deyne AE, Lu YH, Atkison LM, Bernard M, Leroy P, Faris JD, Anderson JA (1995) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Nicholson P, Rezanoor HN, Worland AJ (1993) Chromosomal location of resistance to Septoria nodorum in a synthetic hexaploid wheat determined by the study of chromosomal substitution lines in ‘Chinese Spring’ wheat. Plant Breed 110:177–182. doi:10.1111/j.1439-0523.1993.tb00575.x

    Article  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR et al (2004) A chromosome bin map of 16, 000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712. doi:10.1534/genetics.104.034868

    Article  PubMed  CAS  Google Scholar 

  • Riede CR, Francl LJ, Anderson JA, Jordahl JG, Meinhardt SW (1996) Additional sources of resistance to tan spot of wheat. Crop Sci 36:771–777

    Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Scharen AL, Eyal Z, Huffman MD, Prescott JM (1985) The distribution and frequency of virulence genes in geographically separated populations of Leptosphaeria nodorum. Phytopathology 75:1463–1468

    Article  Google Scholar 

  • Scott PR, Benedikz PW, Cox CJ (1982) A genetic study of relationship between height, time of ear emergence and resistance to Septoria nodorum in wheat. Plant Pathol 31:45–60. doi:10.1111/j.1365-3059.1982.tb02811.x

    Article  Google Scholar 

  • Shi J, Ward R, Wang D, Lewis J (2001) Application of a high throughput, low cost, non-denaturing polyacrylamide gel system for wheat microsatellite mapping. In: Canty SM, Lewis J, Silver L, Ward RW (eds) National Fusarium head blight forum. Erlanger, KY, pp 25–30

    Google Scholar 

  • Singh PK, Mergoum M, Ali S, Adhikari TB, Elias EM, Hughes GR (2006) Identification of new sources of resistance to tan spot, Stagonospora nodorum blotch, and Septoria tritici blotch of wheat. Crop Sci 46:2047–2053. doi:10.2135/cropsci2005.12.0469

    Article  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Elias EM, Kianian SF (2007) Chromosomal location genes for resistance to tan spot and Stagonospora nodorum blotch resistance genes in tetraploid wheat. Euphytica 155:27–34. doi:10.1007/s10681-006-9297-y

    Article  Google Scholar 

  • Singh PK, Feng J, Mergoum M, McCartney CA, Hughes GR (2008) Genetic analysis of seedling resistance to Stagonospora nodorum blotch in selected tetraploid and hexaploid wheat genotypes. Plant Breed (in press)

  • Somers D, Issac P, Edwards K (2004) A high-density wheat microsatellite consensus map for wheat bread (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Wicki W, Messmer M, Winzeler M, Stamp P, Schmid JE (1999a) In vitro screening for resistance against Septoria nodorum blotch in wheat. Theor Appl Genet 99:1273–1280. doi:10.1007/s001220051333

    Article  Google Scholar 

  • Wicki W, Winzeler M, Schmid JE, Stamp P, Messmer M (1999b) Inheritance of resistance to leaf and glume blotch caused by Septoria nodorum Berk. In winter wheat. Theor Appl Genet 99:1265–1272. doi:10.1007/s001220051332

    Article  Google Scholar 

  • Xu SS, Friesen TL, Cai X (2004) Sources and genetic control of resistance to Stagonospora nodorum blotch in wheat. Recent Res Dev Genet Breed 1:449–469

    Google Scholar 

Download references

Acknowledgments

Financial support from Wheat Research and Promotion Council, Minnesota, North Dakota Wheat Commission, USDA CSREES, and State Board of Agricultural Research and Education, North Dakota, USA, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mergoum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Hernandez, J.L., Singh, P.K., Mergoum, M. et al. A quantitative trait locus on chromosome 5B controls resistance of Triticum turgidum (L.) var. diccocoides to Stagonospora nodorum blotch. Euphytica 166, 199–206 (2009). https://doi.org/10.1007/s10681-008-9825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9825-z

Keywords

Navigation