Advertisement

Euphytica

, 165:155 | Cite as

Identification of α-gliadin genes in Dasypyrum in relation to evolution and breeding

  • Guang-Rong Li
  • Cheng Liu
  • Zi-Xian Zeng
  • Ju-Qing Jia
  • Tao Zhang
  • Jian-Ping Zhou
  • Zheng-Long Ren
  • Zu-Jun Yang
Article

Abstract

To better understand molecular evolution of the large α-gliadin gene family and provide a potential value for wheat quality improvement, total 32 α-gliadin gene sequences were isolated from the two Dasypyrum species, D. villosum. (L.) Candargy and D. breviaristatum (Lindb. F.) Frederisksen. Twelve of 32 sequences contained the in-frame stop condons were predicted to be pseudogenes, suggesting the high variation of gliadin genes in Dasypyrum genome. There are five D. breviaristatum α-gliadin sequences present additional cysteine residues. Four peptides which have been identified as T cell stimulatory epitopes in celiac disease (CD) patients through binding to HLA-DQ2/8 were searched to all Dasypyrum α-gliadin gene sequences, and we found that the distribution of the epitopes varied between Dasypyrum genomes. Phylogenetic analysis of the Dasypyrum α-gliadin genes indicated that the sequences from D. breviaristatum displayed higher variation than those from D. villosum, and the genomic differentiation occurred between the two Dasypyrum species. Moreover, the promoter region of the Dasypyrum α-gliadin genes consisted of four different lengths, indicative of the retrotransposons involving the evolution of the gliadin gene promoters. Based on the specific sequences of the Dasypyrum α-gliadin promoter region, we produced sequence-characterized amplified region (SCAR) markers, and localized the Dasypyrum α-gliadin genes on chromosome 6 VS. The SCAR markers can be used to target the introgression of Dasypyrum α-gliadin genes in wheat–Dasypyrum derivatives.

Keywords

Dasypyrum Gliadin Phylogenetic analysis PCR marker 

Notes

Acknowledgements

We are thankful to the National Natural Science Foundation of China (No. 30671288, 30730065), Program for New Century Excellent Talents in University (NCET-06-0810) and Young Scholars Foundation from the Science and Technology Committee of Sichuan, China (2008-31-371) for their financial support. We are grateful to Prof H R Jiang for providing the seeds and we particular thank Prof. B. Friebe (Kansas State University, USA) and two anonymous reviewers for their helpful comments on the manuscript.

References

  1. Anderson OD, Greene FC (1997) The α-gliadin gene family. II DNA and protein sequence variation, subfamily structure and origins of pseudogenes. Theor Appl Genet 95:59–65. doi: 10.1007/s001220050532 CrossRefGoogle Scholar
  2. Anderson OD, Litts JC, Greene FC (1997) The α-gliadin gene family. I Characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and southern analysis of the gene family. Theor Appl Genet 95:50–58. doi: 10.1007/s001220050531 CrossRefGoogle Scholar
  3. Blanco A, Resta P, Simeone R, Parmar S, Shewry PR, Sabelli P et al (1991) Chromosomal location of seed storage protein genes in the genome of Dasypyrum villosum (L.) Candargy. Theor Appl Genet 82:358–362. doi: 10.1007/BF02190623 CrossRefGoogle Scholar
  4. Blanco A, Simeone R, Resta P, De Pace C, Delre V, Caccia R et al (1996) Genomic relationships between Dasypyrum villosum (L.) Candargy and D. hordeaceum (Cosson et Durieu). Candargy. Genome 39:83–92. doi: 10.1139/g96-012 PubMedCrossRefGoogle Scholar
  5. Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat–Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128. doi: 10.1007/BF00223930 CrossRefGoogle Scholar
  6. Chen PD, Zhang SZ, Wang XE, Wang SL, Zhou B, Feng YG et al (2002) New wheat variety Nannong 9918 with high yield and powdery mildew resistance. J Nanjing Agric Univ 25:105–106Google Scholar
  7. De Pace C, Snidaro D, Ciaffi M, Vittori D, Ciofo A, Cenci A et al (2001) Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica 117:67–75. doi: 10.1023/A:1004095705460 CrossRefGoogle Scholar
  8. Frederiksen S (1991) Taxonomic studies in Dasypyrum (Poaceae). Nord J Bot 11:135–142. doi: 10.1111/j.1756-1051.1991.tb01813.x CrossRefGoogle Scholar
  9. Gianibelli MC, Larroque OR, Macritchie F, Wrigley CW (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646. doi: 10.1094/CCHEM.2001.78.6.635 CrossRefGoogle Scholar
  10. Galasso I, Blanco A, Katsiotis A, Pignone D, Heslop-Harrison JS (1997) Genome organization and phylogenetic relationships in the genus Dasypyrum analyzed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma 106:53–61. doi: 10.1007/s004120050224 PubMedCrossRefGoogle Scholar
  11. Gradzielewska A (2006a) The genus Dasypyrum 1. The taxonomy and relationships within Dasypyrum and with Triticeae species. Euphytica 152:429–440. doi: 10.1007/s10681-006-9232-2 CrossRefGoogle Scholar
  12. Gradzielewska A (2006b) The genus Dasypyprum 2. Dasypyrum villosum: A wild species used in wheat improvement. Euphytica 152:441–454. doi: 10.1007/s10681-006-9245-x CrossRefGoogle Scholar
  13. Gu YQ, Crossman C, Kong X, Luo M, You FM, Coleman-Derr D et al (2004) Genomic organization of the complex alpha-gliadin gene locus in wheat. Theor Appl Genet 109:648–657. doi: 10.1007/s00122-004-1672-2 PubMedCrossRefGoogle Scholar
  14. Islam N, Tsujimoto H, Hirano H (2003) Proteome analysis of diploid, tetraploid and hexaploid wheat: towards understanding genome interaction in protein expression. Proteomics 3:549–557. doi: 10.1002/pmic.200390068 PubMedCrossRefGoogle Scholar
  15. Jiang HR, Dai DQ, Sun DF, Xiao SH (1992) New artificial genetic resources of wheat-several polyploids of TriticumDasypyrum. Scientia Agric Sin 25(1):89Google Scholar
  16. Kasarda DD, Okita TW, Bernardin JE, Baecker PA, Nimmo CC, Lew E JL et al (1984) Nucleic (cDNA) and amino acid sequences of α-type gliadins from wheat (Triticum aestivum). Proc Natl Acad Sci USA 81:4712–4716. doi: 10.1073/pnas.81.15.4712 PubMedCrossRefGoogle Scholar
  17. Landjeva S, Korzun V, Borner A (2007) Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica 156:271–296. doi: 10.1007/s10681-007-9371-0 CrossRefGoogle Scholar
  18. Linde-Laursen I, Frederiksen S (1991) Comparison of the Giemsa C-banded karyotypes of Dasypyrum villosum (2X) and D. breviaristatum (4X) from Greece. Hereditas 114:237–244. doi: 10.1111/j.1601-5223.1991.tb00330.x CrossRefGoogle Scholar
  19. Metakavosky EV, Novoselskaya AY (1991) Gliadin allele identification in common wheat I. Methodological aspects of the analysis of gliadin patterns by one-dimensional polyacrylamide gel electrophoresis. J Genet Breed 45:317–324Google Scholar
  20. Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153. doi: 10.1146/annurev.pp. 38.060187.001041 CrossRefGoogle Scholar
  21. Pignone P, Galasso I, Blanco A, Cremonini R (2000) Heterochromatin organization in metaphase chromosomes and interphase nuclei of Dasypyrum breviaristatum (Lindb) Frederiksen. Acta Soc Bot Polon 69:5–9Google Scholar
  22. Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12PubMedGoogle Scholar
  23. Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958. doi: 10.1093/jexbot/53.370.947 PubMedCrossRefGoogle Scholar
  24. Shewry PR, Parmar S, Pappin DJC (1987) Characterization and genetic control of the prolamins of Haynaldia villosa: relationship to cultivated species of the Triticeae (rye, wheat and barley). Biochem Genet 25:309–325. doi: 10.1007/BF00499323 PubMedCrossRefGoogle Scholar
  25. Shewry PR, Sabelli PA, Parmar S, Lafiandra D (1991) α-Type prolamins are encoded by genes on chromosomes 4Ha and 6Ha of Haynaldia villosa Schur (syn. Dasypyrum villosum L.). Biochem Genet 29:207–211PubMedGoogle Scholar
  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  27. van Herpen TW, Goryunova SV, van der Schoot J, Mitreva M, Salentijn E, Vorst O et al (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1. doi: 10.1186/1471-2164-7-1 PubMedCrossRefGoogle Scholar
  28. Yang ZJ, Li GR, Feng J, Jiang HR, Ren ZL (2005) Molecular cytogenetic characterization and disease resistance observation of wheat—Dasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas 142:80–85. doi: 10.1111/j.1601-5223.2005.01918.x PubMedCrossRefGoogle Scholar
  29. Yang ZJ, Liu C, Feng J, Li GR, Zhou JP, Deng KJ et al (2006a) Studies on genomic relationship and specific marker of Dasypyrum breviaristatum in Triticeae. Hereditas 143:47–54PubMedGoogle Scholar
  30. Yang ZJ, Li GR, Shu HL, Liu C, Feng J, Chang ZJ et al (2006b) Molecular characterization of high molecular weight glutenin subunit allele 1B × 23 in common wheat introduced from hexaploid triticale. Hereditas 143:159–166PubMedCrossRefGoogle Scholar
  31. Yildirim A, Jones SS, Murray TD (1998) Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome 41:1–6. doi: 10.1139/gen-41-1-1 CrossRefGoogle Scholar
  32. Zhang Q, Li Q, Wang X, Wang H, Lang S, Wang Y et al (2005) Development and characterization of a Triticum aestivumHaynaldia villosa translocation line T4VS/4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145:317–320. doi: 10.1007/s10681-005-1743-8 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Guang-Rong Li
    • 1
  • Cheng Liu
    • 1
  • Zi-Xian Zeng
    • 1
  • Ju-Qing Jia
    • 1
  • Tao Zhang
    • 1
  • Jian-Ping Zhou
    • 1
  • Zheng-Long Ren
    • 1
    • 2
  • Zu-Jun Yang
    • 1
  1. 1.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Key Laboratory for Plant Genetics and BreedingSichuan Agricultural UniversityYa’anPeople’s Republic of China

Personalised recommendations