Skip to main content

Advertisement

Log in

Plant growth habit, root architecture traits and tolerance to low soil phosphorus in an Andean bean population

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The optimal plant growth habit and architecture of common bean (Phaseolus vulgaris L.) is dependent on environmental conditions. The objectives of this research were to determine if plant growth habit impacts a plant’s ability to grow in low P conditions, as measured by P uptake, seed yield, and P use efficiency and to determine if aboveground plant growth habit and root growth are associated at variable P soil levels. The study was carried out with recombinant inbred lines developed from an Andean intra-gene pool cross between a low P tolerant parent with an indeterminate growth habit (G19833) and a low P susceptible parent with a determinate growth habit (AND696). The population was grown for 2 years in low and sufficient P conditions in a field site in Darien, Colombia. In the first season, indeterminate lines had 15% more seed yield than the determinate lines in the low P treatment, whereas there was no difference by growth habit in the high P treatment. In the second season, seed yield and tolerance to low P was not influenced by growth habit. Root architectural characteristics such as root length density (RLD) and root surface area were 25% and 34% greater respectively in the indeterminate lines under P-sufficiency, whereas under low P, root architecture traits were not significantly different by growth habit. Root plasticity was higher in determinate lines, although RLD and root surface area did not play a significant role in tolerance to low P. Overall, the data were consistent with shoot growth habit as playing a complex and important role in adaptation to P-deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RIL:

Recombinant inbred line

SRL:

Specific root length

RLD:

Root length density

PUE:

Phosphorus use efficiency

RSA:

Root surface area

References

  • Beebe S, Lynch J, Galwey N, Tohme J, Ochoa I (1997) A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95:325–336. doi:10.1023/A:1003008617829

    Article  Google Scholar 

  • Beebe SE, Rojas-Pierce M, Yan XL, Blair MW, Pedraza F, Munoz F et al (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423. doi:10.2135/cropsci2005.0226

    Article  CAS  Google Scholar 

  • Bonser AM, Lynch J, Snapp S (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132:281–288. doi:10.1111/j.1469-8137.1996.tb01847.x

    Article  PubMed  CAS  Google Scholar 

  • Brothers ME, Kelly JD (1993) Interrelationship of plant architecture and yield components in the pinto bean ideotype. Crop Sci 33:1234–1238

    Google Scholar 

  • Checa O, Ceballos H, Blair MW (2006) Generation means analysis of climbing ability in common bean (Phaseolus vulgaris L.). J Hered 97:456–465. doi:10.1093/jhered/esl025

    Article  PubMed  Google Scholar 

  • CIAT (2000) Inheritance of low phosphorus tolerance in the Andean population AND696 × G19833. Bean improvement for the tropics unit annual report. CIAT, Cali, Colombia

  • Coyne DP, Schuster ML (1974) Inheritance and linkage relations of reaction to Xanthomonas phaseoli (common blight), Stage of plant development and plant habit in Phaseolus-Vulgaris L. Euphytica 23:195–204. doi:10.1007/BF00035858

    Article  Google Scholar 

  • Dawo MI, Sanders FE, Pilbeam DJ (2007) Yield, yield components and plant architecture in the F3 generation of common bean (Phaseolus vulgaris L.) derived from a cross between the determinate cultivar ‘Prelude’ and an indeterminate landrace. Euphytica 156:77–87. doi:10.1007/s10681-007-9354-1

    Article  Google Scholar 

  • DeMarco DG (1990) Effect of seed weight, and seed phosphorus and nitrogen concentrations on the early growth of wheat seedlings. Aust J Exp Agric 30:545–549. doi:10.1071/EA9900545

    Article  CAS  Google Scholar 

  • Gahoonia TS, Nielsen NE (2003) Phosphorus uptake and growth of a root hairless barley mutant (bald root barley, brb) and wild type in low- and high-P soils. Plant Cell Environ 26:1759–1766. doi:10.1046/j.1365-3040.2003.01093.x

    Article  CAS  Google Scholar 

  • Hammond JP, Broadley LR, White PJ (2004) Genetic responses to phosphorus deficiency. Ann Bot (Lond) 94:323–332. doi:10.1093/aob/mch156

    Article  CAS  Google Scholar 

  • Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 11:610–617. doi:10.1016/j.tplants.2006.10.007

    Article  PubMed  CAS  Google Scholar 

  • Huyghe C (1998) Genetics and genetic modifications of plant architecture in grain legumes: a review. Agronomie 18:383–411. doi:10.1051/agro:19980505

    Article  Google Scholar 

  • Kelly JD (1998) Bean roots—a plant breeder’s perspective. Bean Improv Cooperative Annu Rep 41:214–215

    Google Scholar 

  • Kelly JD (2000) Remaking bean plant architecture for efficient production. Adv Agron 71:109–143. doi:10.1016/S0065-2113(01)71013-9

    Article  Google Scholar 

  • Kelly JD, Adams MW, Varner GV (1987) Yield stability of determinate and indeterminate dry bean cultivars. Theor Appl Genet 74:516–521. doi:10.1007/BF00289831

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Google Scholar 

  • Liao H, Yan XL (2000) Genotypic variation in root morphological characteristics of common bean in relation to phosphorus efficiency. Acta Bot Sin 43:1161–1166

    Google Scholar 

  • Liptay A, Arevalo AE (2000) Plant mineral accumulation, use and transport during the life cycle of plants: a review. Can J Plant Sci 80:29–38

    CAS  Google Scholar 

  • Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287. doi:10.1016/S1369-5266(03)00035-9

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP, Beebe SE (1995) Adaptation of beans (Phaseolus vulgaris L.) to low phosphorus availability. HortScience 30:1165–1171

    CAS  Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237. doi:10.1023/A:1013324727040

    Article  CAS  Google Scholar 

  • Lynch J, Vanbeem JJ (1993) Growth and architecture of seedling roots of common bean genotypes. Crop Sci 33:1253–1257

    Google Scholar 

  • Mekbib F (2003) Yield stability in common bean (Phaseolus vulgaris L.) genotypes. Euphytica 130:147–153. doi:10.1023/A:1022878015943

    Article  CAS  Google Scholar 

  • Miller CR, Ochoa I, Nielsen KL, Beck D, Lynch JP (2003) Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils. Funct Plant Biol 30:973–985. doi:10.1071/FP03078

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution for determination of phosphate in natural waters. Anal Chim Acta 27:31–36. doi:10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621. doi:10.2135/cropsci2005.12-0446

    Article  CAS  Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL et al (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. ASA-SSSA, Madison, WI, pp 403–430

    Google Scholar 

  • Roman-Aviles B, Snapp SS, Kelly JD (2004) Assessing root traits associated with root rot resistance in common bean. Field Crops Res 86:147–156. doi:10.1016/j.fcr.2003.08.001

    Article  Google Scholar 

  • Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-Lopez C, Ortiz-Cereceres J, Kelly JD (2004) Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Res 85:203–211. doi:10.1016/S0378-4290(03)00161-8

    Article  Google Scholar 

  • Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, Gutierrez-Ortega A, Hernandez-Abreu E, Herrera-Estrella L (2006) Characterization of low phosphorus insensitive mutants reveals a crosstalk between low phosphorus induced determinate root development and the activation of genes involved in the adaptation of Arabidopsis to phosphorus deficiency. Plant Physiol 140:879–889. doi:10.1104/pp. 105.073825

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Teran H, Munoz CG, Osorno JM, Takegami JC, Thung MDT (2003) Low soil fertility tolerance in landraces and improved common bean genotypes. Crop Sci 43:110–119

    Google Scholar 

  • Sultan SE (1987) Evolutionary implications of phenotypic plasticity in plants. Evol Biol 21:127–178

    Google Scholar 

  • Toro O, Tohme J, Debouck DG (1990) Wild bean (Phaseolus vulgaris L.): Description and distribution. Centro Internacional de Agricultura Tropical, Cali, Colombia

    Google Scholar 

  • White JW, Kornegay J, Castillo J, Molano CH, Cajiao C, Tejada G (1992) Effect of growth habit on yield of large-seeded bush cultivars of common bean. Field Crops Res 29:151–161. doi:10.1016/0378-4290(92)90084-M

    Article  Google Scholar 

  • Wissuwa M (2003) How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects. Plant Physiol 133:1947–1958. doi:10.1104/pp. 103.029306

    Article  PubMed  CAS  Google Scholar 

  • Wortmann CS, Kirkby RA, Eledu CA, Allen DJ (1998) Atlas of common bean (Phaseolus vulgaris L.) production in Africa CIAT, Cali, Colombia

  • Yan XL, Lynch JP, Beebe SE (1995a) Genetic variation for phosphorus efficiency of common bean in contrasting soil types 1. Vegetative response. Crop Sci 35:1086–1093

    Google Scholar 

  • Yan XL, Lynch JP, Beebe SE (1995b) Genetic variation for phosphorus efficiency of common bean in contrasting soil types 2. Yield response. Crop Sci 35:1094–1099

    Google Scholar 

  • Yan XL, Lynch JP, Beebe SE (1996) Utilization of phosphorus substrates by contrasting common bean genotypes. Crop Sci 36:936–941

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Cichy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cichy, K.A., Snapp, S.S. & Blair, M.W. Plant growth habit, root architecture traits and tolerance to low soil phosphorus in an Andean bean population. Euphytica 165, 257–268 (2009). https://doi.org/10.1007/s10681-008-9778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9778-2

Keywords

Navigation