, 164:275 | Cite as

Identification of QTL underlying the resistance of soybean to pod borer, Leguminivora glycinivorella (Mats.) obraztsov, and correlations with plant, pod and seed traits

  • Guiyun Zhao
  • Jian Wang
  • Yingpeng Han
  • Weili Teng
  • Genlou Sun
  • Wenbin Li


Soybean (Glycine max L. Merr.) pod borer (Leguminivora glycinivorella (Mats.) Obraztsov) (SPB) results in severe loss in soybean yield and quality in certain regions of the world, especially in Northeastern China, Japan and Russia. The aim here was to evaluate the inheritance of pod borer resistance and to identify quantitative trait loci (QTL) underlying SPB resistance for the acceleration of the control of this pest. Used were the 129 recombinant inbred lines (RILs) of the F5:6 derived population from ‘Dong Nong 1068’ × ‘Dong Nong 8004’ and 131 SSR markers. Correlations between the percentage of damaged seeds (PDS) by pod borer and plant, pod and seed traits that were potentially related to SPB resistance were analyzed. The results showed highly significant correlations between PDS by pod borer and plant height (PH), maturity date (MA), pod color (PC), pubescence density (PB), 100-seed weight (SW) and protein content existed. Soybeans with dwarf stem, light color of pod coat, small seeds, lower density of pubescence, early maturity and low content of protein seemed to have higher resistance to SPB. The correlated traits had potential to inhibit egg deposition and thereby to decrease the damage by SPB. Three QTL directly associated with the resistance to SPB judged by PDS at harvest were identified. qRspb-1 (Satt541–Satt253) and qRspb-2 (Satt253–Satt314) were both on linkage group (LG) H and qRspb-3 (Satt288–Satt199) on LG G. The three QTL explained 10.96, 9.73 and 11.59% of the phenotypic variation for PDS, respectively. In addition, 12 QTL that underlay 10 of 13 traits potentially related with SPB resistance were found. These QTL detected jointly provide potential for marker assisted selection to improve cultivar resistance to SPB.


QTL Soybean pod borer SPB MAS SSR marker 



This study was conducted in the Key Laboratory of Soybean Biology of Chinese Education Ministry and financially supported by National 863 Projects (contract no. 2006AA100104-4 and 2006AA10Z1F1), National Nature Science Foundation projects and National 973 project.


  1. Allen FL (1994) Usefulness of plant genome mapping to plant breeding. In: Gresshoff P (ed) Plant genome analysis. CRC Press, Boca Raton, pp 11–18Google Scholar
  2. Basten CJ, Weir BS, Zeng ZB (1996) QTL cartographer. North Carolina State University, NCGoogle Scholar
  3. Bindra OS, Singh H (1969) Phycitid pod-borer, Etiellazinckenella Treitschke (Lepidoptera: Phycitidae). Pesticides 3:14–17Google Scholar
  4. Bonierbale MW, Plaisted RL, Pineda O, Tanksley SD (1994) QTL analysis of trichome-mediated insect resistance in potato. Theor Appl Genet 87:973–987. doi: 10.1007/BF00225792 CrossRefGoogle Scholar
  5. Byrne PF, McMullen MD, Snook ME, Musket TA, Theuri JM, Widstrom NW et al (1996) Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci USA 93:8820–8825. doi: 10.1073/pnas.93.17.8820 PubMedCrossRefGoogle Scholar
  6. Byrne PF, McMullen MD, Wiseman BR, Snook ME, Musket TA, Theuri JM et al (1997) Identification of maize chromosome regions associated with antibiosis to corn earworm (Lepidoptera: Noctuidae) larvae. J Econ Entomol 90:1039–1045Google Scholar
  7. Churchill RW, Doerge GA (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedGoogle Scholar
  8. Concibido VC, Denny RL, Lange DA, Orf JH, Young ND (1996) RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci 36:1643–1650Google Scholar
  9. Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131Google Scholar
  10. Concibido VC, Lange DA, Denny RL, Orf JH, Young ND (1997) Genome mapping of soybean cyst nematode resistance genes in ‘Peking’, PI 90763, and PI 88788 using DNA markers. Crop Sci 37:258–264Google Scholar
  11. Cregan PB, Jarvik T, Bush AL, Shoemaker RC, Lark KG, Kahler AL et al (1999) An integrated genetic linkage map of the soybean genome. Crop Sci 39:1464–1490Google Scholar
  12. Doyle JJ (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  13. Dintinger J, Verger D, Caiveau S, Risterucci AM, Gilles J, Chiroleu F et al (2005) Genetic mapping of maize stripe disease resistance from the Mascarene source. Theor Appl Genet 111:347–359. doi: 10.1007/s00122-005-2027-3 PubMedCrossRefGoogle Scholar
  14. Dweikat I, Ohm H, Patterson F, Cambron S (1997) Identification of RAPD markers for 11 Hessian fly resistance genes in wheat. Theor Appl Genet 94:419–423. doi: 10.1007/s001220050431 CrossRefGoogle Scholar
  15. Edmonds RP, Borden JH, Angerilli NPD, Raul A (2000) A comparison of the developmental and reproductive biology of two SPBs, Etiella Spp. in Indonesia. Entomol Exp Appl 97:137–147. doi: 10.1023/A:1004099706718 CrossRefGoogle Scholar
  16. Hammond RB, Bierman P, Levine E, Cooper RL (2001) Field resistance of two soybean germplasm lines, HC95–24 MB, against bean leaf beetle (Coleoptera: Chrysomelidae), western corn rootworm (Coleoptera: Chrysomelidae), and Japanese beetles (Coleoptera: Scarabaidae). J Econ Entomol 94:1594–1601PubMedCrossRefGoogle Scholar
  17. Harnoto A, Naito A, Iqbal A (1984) Control of the Etiella podborer on soybean. Penelitian Pertanian 4:124–127Google Scholar
  18. Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Stefaniak TR et al (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561. doi: 10.1007/s00122-004-1661-5 PubMedCrossRefGoogle Scholar
  19. Ishii T, Brar DS, Multani DS, Khush GS (1994) Molecular tagging of genes for brown plant hopper resistance and earliness introgressed from Oryza australiensis into cultivated rice, O. sativa. Genome 37:217–221. doi: 10.1139/g94-030 PubMedCrossRefGoogle Scholar
  20. Kalshoven LGE (1981) Pest of crops of Indonesia. Revised and translated by P. A. van der Laan. P. T. Ichtiar Baru, Van Hoeve, JakartaGoogle Scholar
  21. Kar S, Basu D, Das S, Ramkrishnan NA, Mukherjee P, Nayak P et al (1997) Expression of cryIA(c) gene of Bacillus thuringiensis in transgenic chickpea plants inhibits development of podborer (Heliothis armigera) larvae. Transgenic Res 6:177–185. doi: 10.1023/A:1018433922766 CrossRefGoogle Scholar
  22. Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ et al (2006) An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 113:1015–1026. doi: 10.1007/s00122-006-0361-8 PubMedCrossRefGoogle Scholar
  23. Khush GS, Brar DS (1991) Genetics of resistance to insects in crop plants. Adv Agron 45:223–274. doi: 10.1016/S0065-2113(08)60042-5 CrossRefGoogle Scholar
  24. Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S et al (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. doi: 10.1016/0888-7543(87)90010-3 PubMedCrossRefGoogle Scholar
  25. Maliepaard C, Bas N, Heusden S, Kos J, Pet G, Verkerk R et al (1995) Mapping of QTL for glandular trichome densities and Trialeurodes vaporarium (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum3 Lycopersicon hirsutum f. glabratum. Heredity 75:425–433. doi: 10.1038/hdy.1995.155 CrossRefGoogle Scholar
  26. Meksem K, Pantazopoulos P, Njiti VN, Hyten DL, Arelli PR, Lightfoot DA (2001) ‘Forrest’ resistance to the soybean cyst nematode is bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor Appl Genet 103:710–717. doi: 10.1007/s001220100597 CrossRefGoogle Scholar
  27. Micic Z, Hahn V, Bauer E, Schon CC, Knapp SJ, Tang S et al (2004) QTL mapping of Sclerotiniamid stalk-rot resistance in sunflower. Theor Appl Genet 109:1474–1484. doi: 10.1007/s00122-004-1764-z PubMedCrossRefGoogle Scholar
  28. Mutschler MA, Doerge RW, Liv SC, Kuai JP, Liedl BE, Shapiro JA (1996) QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTL controlling acyl-sugar level and composition. Theor Appl Genet 92:709–718. doi: 10.1007/BF00226093 CrossRefGoogle Scholar
  29. Nair S, Kumar A, Srivastava MN, Mohan M (1996) PCR based DNA markers linked to a gall midge resistance gene, Gm4t, has potential for marker-aided selection in rice. Theor Appl Genet 92:660–665. doi: 10.1007/BF00226086 CrossRefGoogle Scholar
  30. Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma RH (2001) A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Sci 41:1931–1939Google Scholar
  31. Nieto-Lopez RM, Blake TK (1994) Russian wheat aphid resistance in barley: inheritance and linked molecular markers. Crop Sci 34:655–659Google Scholar
  32. Njiti VN, Lightfoot DA (2006) Genetic analysis infers Dt loci underlie resistance to SDS caused by Fusarium virguliforme in indeterminate soybeans. Can J Plant Sci 41:83–89Google Scholar
  33. Njiti VN, Meksem K, Iqbal MJ, Johnson JE, Kassem MA, Zobrist KF et al (2002) Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet 104:294–300. doi: 10.1007/s001220100682 PubMedCrossRefGoogle Scholar
  34. Rector BG, All JN, Parrott WA, Boerma HR (1998) Identification of molecular markers associated with quantitative trait loci for soybean resistance to corn earworm. Theor Appl Genet 96:786–790. doi: 10.1007/s001220050803 CrossRefGoogle Scholar
  35. Rector BG, All JN, Parrott WA, Boerma HR (1999) Quantitative trait loci for antixenosis resistance to corn earworm in soybean. Crop Sci 39:531–538Google Scholar
  36. Rector BG, All JN, Parrott WA, Boerma HR (2000) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci 40:233–238Google Scholar
  37. Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X et al (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128. doi: 10.1007/s00122-004-1602-3 PubMedCrossRefGoogle Scholar
  38. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:832–839Google Scholar
  39. Supriyatin (1992) Assessment of yield loss caused by pod damaging pests on soybean in Indonesia. In: Ooi PAC, Lim GS, Teng PS (eds) Proceedings of the 3rd international conference on plant protection in the tropics, vol 5. M.A.P.P.S., March 20–23, 1990, Kuala Lumpur, Malaysia, pp 164–167Google Scholar
  40. Talekar NS (1987) Insects damaging soybean in Asia. In: Singh SR, Rachie KO, Dashiell KK (eds) Soybeans for the tropics: research production, and utilization. Wiley, New York, pp 25–45Google Scholar
  41. Terry LI, Chase K, Orf J, Jarvik T, Mansur L, Lark KG (1999) Insects resistance in recombinant inbred soybean lines derived from non-resistance parents. Entomol Exp Appl 91:465–476. doi: 10.1023/A:1003704116546 CrossRefGoogle Scholar
  42. Terry LI, Chase K, Jarvik T, Orf J, Mansur L, Lark KG (2000) Soybean quantitative trait loci for resistance to insects. Crop Sci 40:375–382Google Scholar
  43. Trigizano RN, Caetano-Anolles G (1998) Laboratory exercises on DNA amplification fingerprinting for evaluating the molecular diversity of horticultural species. Horttechnology 8:413–423Google Scholar
  44. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi: 10.1093/jhered/93.1.77 PubMedCrossRefGoogle Scholar
  45. Wang JA (1999) Development of new resistance source and analysis of resistance to soybean pod borer. Chin J Soybean General 23(2):57–59Google Scholar
  46. Wang JA, Luo QX (2001) Evaluation of soybean pod borer resistance and analysis of resistance characteristics in soybean. Chin J Oil Crop Sci 23(2):57–59Google Scholar
  47. Xue JJ, Cheng HM (1992) Preliminary study on the resistant mechanisms of soybean resistance to pod borer. Agronomica Ainica 7(4):91–98Google Scholar
  48. Yencho GC, Bonierbale MW, Tingey WM, Plaisted RL, Tanksley SD (1996) Molecular markers locate genes for resistance to the Colorado potato beetle, Leptinotarsa decemlineata, in hybrid Solanum tuberosum × S. berthaultii potato progenies. Entomol Exp Appl 81:141–154. doi: 10.1007/BF00192139 CrossRefGoogle Scholar
  49. Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS, Shanmugasundarum S et al (1992) RFLP mapping of a major bruchid resistance gene in mungbean. Theor Appl Genet 84:839–844. doi: 10.1007/BF00227394 CrossRefGoogle Scholar
  50. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976. doi: 10.1073/pnas.90.23.10972 PubMedCrossRefGoogle Scholar
  51. Zhang ZJ (1983) The inheritance of soybean resistance to pod borer. In: Proceedings of the US-China soybean Symposium. pp 84–89Google Scholar
  52. Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL et al (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139. doi: 10.1007/s00122-003-1527-2 PubMedCrossRefGoogle Scholar
  53. Zhao AL, Wang LL, Wang XL, Wang DW (1994) Study of relationship between resistance to soybean pod borer and morphological & biological factors and chemical factors in different levels. Chin J Jilin Agric Univ 16(11):43–48Google Scholar
  54. Zou J, Lee J, Singh R, Xu SS, Cregan PB, Hymowitz T (2003) Assignment of molecular linkage groups to the soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750. doi: 10.1007/s00122-003-1304-2 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Guiyun Zhao
    • 1
    • 2
  • Jian Wang
    • 1
  • Yingpeng Han
    • 1
  • Weili Teng
    • 1
  • Genlou Sun
    • 3
  • Wenbin Li
    • 1
  1. 1.Soybean Research Institute, Key Laboratory of Soybean Biology in Chinese Ministry of EducationNortheast Agricultural UniversityHarbinChina
  2. 2.Biology DepartmentBeihua UniversityJilinChina
  3. 3.Biology DepartmentSaint Mary’s UniversityHalifaxCanada

Personalised recommendations