Skip to main content
Log in

Identification of four genes for stable hybrid sterility and an epistatic QTL from a cross between Oryza sativa and Oryza glaberrima

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

To further understand the nature of hybrid sterility between Oryza sativa and Oryza glaberrima, quantitative trait loci (QTL) controlling hybrid sterility between the two cultivated rice species were detected in BC1F1 and advanced backcross populations. A genetic map was constructed using the BC1F1 population derived from a cross between WAB450-16, an O. sativa cultivar, and CG14, an O. glaberrima cultivar. Seven main-effect QTLs for pollen and spikelet sterility were detected in the BC1F1. Forty-four sterility NILs (BC6F1) were developed via successive backcrosses using pollen sterility plants as female and WAB450-16 as the recurrent parent. Seven NILs, in which the target QTL regions were heterozygous while the other QTL regions as well as most of the reminder of the genome were homozygous for the WAB450-16 allele, were selected as the QTL identification materials. BC7F1 for the seven NILs showed a continuous variation in pollen and spikelet fertility. The four identified pollen sterility QTLs were located one each on chromosomes 1, 3, 7 and 7. Pollen sterility loci qSS-3 and qSS-7a were on chromosomes 3 and 7, respectively, which coincides with the previously identified S19, and S20, while loci qSS-1 and qSS-7b on chromosomes 1 and 7L appear distinct from all previously reported loci. An epistatic interaction controlling the hybrid sterility was detected between qSS-1 and qSS-7a.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Basten CJ, Weir BS, Zeng ZB (1998) QTL CARTOGRAPHER: a reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424

    Article  PubMed  CAS  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Chu YE, Morishima H, Oka HI (1969) Reproductive barriers distributed in cultivated rice species and their wild relatives. Jap J Genet 44:207–223

    Article  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  Google Scholar 

  • Doi K, Taguchi K, Yoshimura A (l998a) A new locus affecting high F1 pollen sterility found in backcross progenies between Japonica rice and African rice. Rice Genet Newsl 15:146–148

    Google Scholar 

  • Doi K, Yoshimura A, Iwata N (1998b) RFLP mapping and QTL analysis of heading date and pollen sterility using backcross population between Oryza sativa L. and Oryza glaberrima Steud. Breed Sci 48:395–399

    CAS  Google Scholar 

  • Doi K, Taguchi K, Yoshimura A (1999) RFLP mapping of S20 and S21 for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genet Newsl 16:65–68

    Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interaction of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Fan CC, Xing YZ, HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Mott R (2001) Finding the molecular basis of quantitative traits: successes and pitfalls. Nat Rev Genet 2:437–445

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Knaap EVD, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Ghesquiere A, Sequier J, Second G, Lorieux M (1997) First steps towards a rational use of African rice, Oryza glaberrima, in rice breeding through a ‘contig line’ concept. Euphytica 96:31–39

    Article  Google Scholar 

  • Glazier AM, Nadeau JH, Aitman TJ (2002) Finding genes that underlie complex traits. Science 298:2345–2349

    Article  PubMed  CAS  Google Scholar 

  • Hu FY, Xu P, Deng XN, Zhou JW, Li J, Tao DY (2006) Molecular mapping of a pollen killer gene S29(t) in Oryza glaberrima and co-linear analysis with S22 in O. glumaepatula. Euphytica 151:273–278

    Article  CAS  Google Scholar 

  • Jones MP, Dingkuhn M, Aluko GK, Senmon M (1997) Interspecific Oryza sativa L. × O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92:237–246

    Article  Google Scholar 

  • Kitamura E (1962) Genetic studies on sterility observed in hybrids between distantly related varieties of rice, Oryza sativa L. Bull Chugoku Agric Exp Station A8:141–205

    Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Yoshimura A (2005) Epistasis underlying female sterility detected in hybrid breakdown in a Japonica-Indica cross of rice (Oryza sativa L.). Theor Appl Genet 110:346–355

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Green P (1987) Construction of multilocus genetic maps in Humans. Proc Natl Acad Sci USA 84:2363–2367

    Article  PubMed  CAS  Google Scholar 

  • Li ZB (1980) A preliminary discussion about the classification of male sterile lines of rice in China. Acta Agron Sin 6(1):17–26

    Google Scholar 

  • Lin HX, Yamamoto T, Sasaki T, Yano M (2000) Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor Appl Genet 101:1021–1028

    Article  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP3.0. Whitehead Institute Technical Report (3rd edn)

  • Liu JP, Eck JV, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shape tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Lorieux M, Ndjiondjop MN, Ghesquière A (2000) A first interspecific Oryza sativa × Oryza glaberrima microsatellite based genetic linkage map. Theor Appl Genet 100:593–601

    CAS  Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Ann Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Manly KF, Cudmore Jr RH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Mizuta Y, Harushima Y, Kurata N (2006) Mapping of a pair of reproductive barrier loci observed in a cross between Nipponbare and Kasalath. Rice Genet Newsl 23:33–35

    Google Scholar 

  • Morinaga T, Kuriyama H (1957) Cytogenetical studies on Oryza sativa L. IX. The F1 hybrid of O. sativa L and O. glaberrima. Steud. Jpn J Breed 12:153–165

    Google Scholar 

  • Morishima H, Hinata K, Oka HI (1962) Comparison between two cultivated rice species, Oryza sativa L. and O. glaberrima Steud. Jap J Breed 12(3):153–165

    Google Scholar 

  • Oka HI (1974) Analysis of genes controlling F1 sterility in rice by the use of isogenic lines. Genetics 77:521–534

    PubMed  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Sano Y (1983) A new gene controlling sterility in F1 hybrids of two cultivated rice species. J Hered 74: 435–439

    Google Scholar 

  • Sano Y (1986) Sterility barriers between Oryza sativa and O. glaberrima. In: International Rice Research Institute (eds) Rice genetics. International Rice Research Institute, Manila, pp 109–118

  • Sano Y (1990) The genic nature of gamete eliminator in rice. Genetics 125:183–191

    PubMed  CAS  Google Scholar 

  • Sano Y, Chu YE, Oka HI (1979) Genetic studies of speciation in cultivated rice. 1. Genic analysis for the F1sterility between Oryza sativa L. and O. glaberrima Steud. Jpn J Genet 54:121–132

    Article  Google Scholar 

  • Shinjyo C (1975) Genetical studies of cytoplasmic male sterility and fertility restoration in rice, Oryza sativa L. Sci Bull Coll Agr Univ Ryukyus 22:1–57

    Google Scholar 

  • Sinha H, Nicholson BP, Steinmetz LM, McCusker JH (2006) Complex genetic interactions in a quantitative trait locus. PLOS Genet 2(2):140–147

    Article  CAS  Google Scholar 

  • Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416:326–330

    Article  PubMed  CAS  Google Scholar 

  • Taguchi K, Doi K, Yoshimura A (1999) RFLP mapping of S19, a gene for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genet Newsl 16:70–71

    Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd-6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi Y, Lin SY, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet 107:1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tao DY, Hu FY, Yang G, Yang J, Tao H (1997) Exploitation and utilization of interspecific hybrid vigor between Oryza sativa and O. glaberrima. In: Jones MP, M Dingkuhn, Johnson DE, Fagade SO (eds) Interspecific hybridization: progress and prospects. WARDA/ADRAO, Cote d’Ivoire, pp 103–112

    Google Scholar 

  • Tao DY, Xu P, Hu FY, Yang YQ, Li J, Zhou JW, Jones MP (2002) Hybrid sterility among near-isogenic lines derived from interspecific hybrid between cultivated rice species Oryza sativa and O. glaberrima. Chinese J Rice Sci 16(2):106–110

    Google Scholar 

  • Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, Wang HL, Lei CL, Wang JL, Zhang X, Cheng ZJ, Guo XP (2006) QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 112:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Ning N, McCouch SR (1997) Chromosomal region associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred population in rice (Oryza sativa L.). Mol Gen Genet 253:535–545

    Article  PubMed  CAS  Google Scholar 

  • Yabuno T (1995) A gametocidal factor of Oryza galberrima Steud. in O. sativa L. Euphytica 45:191–195

    Google Scholar 

  • Yamamoto T, Kuboki Y, Lin SY, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97:37–44

    Article  CAS  Google Scholar 

  • Yamamoto T, Lin HX, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6, and characterization of its epistatic interaction with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    PubMed  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan LL, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Sasaki T (1997) Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 35:145–153

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd-1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant cell 12:2473–2483

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded partially by grants from Ministry of Science and Technology (2006CB708207), and Yunnan Department of Science and Technology (2002C0009Z, 2003RC02, 2004PY01-21, 2006GP09), the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianmin Wan or Dayun Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Xu, P., Deng, X. et al. Identification of four genes for stable hybrid sterility and an epistatic QTL from a cross between Oryza sativa and Oryza glaberrima . Euphytica 164, 699–708 (2008). https://doi.org/10.1007/s10681-008-9684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9684-7

Keywords

Navigation