Advertisement

Euphytica

, Volume 163, Issue 1, pp 1–19 | Cite as

Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat

  • Annamária Schneider
  • István Molnár
  • Márta Molnár-Láng
Review

Abstract

Wild Aegilops species related to cultivated wheat (Triticum spp.) possess numerous genes of agronomic interest and can be valuable sources of resistance to diseases, pests and extreme environmental factors. These genes can be incorporated into the wheat genome via intergeneric crossing, following, where necessary, the development of chromosome addition and substitution lines from the resulting hybrids. The transfer of a single segment from an alien chromosome can be achieved by translocations. The Aegilops (goatgrass) species, which are the most closely related to wheat, exhibit great genetic diversity, the exploitation of which has been the subject of experimentation for more than a century. The present paper gives a survey of the results achieved to date in the field of wheat–Aegilops hybridisation and gene transfer. The Aegilops genus consists of 11 diploid, 10 tetraploid and 2 hexaploid species. Of these 23 Aegilops species, most of the diploids (Ae. umbellulata Zhuk., Ae. mutica Boiss., Ae. bicornis (Forssk.) Jaub. & Spach, Ae. searsii Feldman & Kislev ex Hammer, Ae. caudata L., Ae. sharonensis Eig, Ae. speltoides Tausch, Ae. longissima Schweinf. & Muschl.) and several polyploids (Ae. ventricosa Tausch, Ae. peregrina (Hack. In J. Fraser) Marie & Weiller, Ae. geniculata Roth, Ae. kotschyi Boiss., Ae. biuncialis L.) have been used to develop wheat–Aegilops addition lines. Wheat–Aegilops substitution lines were developed using several species, including Ae. umbellulata, Ae. caudata, Ae. tauschii, Ae. speltoides, Ae. sharonensis, Ae. longissima and Ae. geniculata. Translocations carrying genes responsible for useful agronomic traits were developed with Ae. umbellulata, Ae. comosa, Ae. ventricosa, Ae. longissima, Ae. speltoides and Ae. geniculata. A large number of genes were transferred from Aegilops species to cultivated wheat, including those for resistance to leaf rust, stem rust, yellow rust and powdery mildew, and various pests (cereal cyst nematode, root knot nematode, Hessian fly, greenbug). Many molecular markers are linked to these resistance genes. The development of new molecular markers is also underway. There are still many untapped genetic resources in Aegilops species that could be used as resistance sources for plant breeding.

Keywords

Wheat Aegilops Intergeneric hybrids Addition lines Substitution lines Translocation lines Molecular markers 

Notes

Acknowledgements

This work was financially supported by the Hungarian Wheat Ear Research Consortium (OM-00018/2004). The authors wish to express their gratitude to B. Harasztos for revising the manuscript linguistically.

References

  1. Adonina IG, Salina EA, Efremova TT, Pshenichnikova TA (2004) The study of introgressive lines of Triticum aestivum × Aegilops speltoides by in situ and SSR analyses. Plant Breeding 123:220–224Google Scholar
  2. Aghaee-Sarbarzeh M, Harjit-Singh, Dhaliwal HS (2000) Ph I gene derived from Aegilops speltoides induces homoeologous chromosome pairing in wide crosses of Triticum aestivum. J Hered 91:417–421Google Scholar
  3. Aghaee-Sarbarzeh M, Harjit-Singh, Dhaliwal HS (2001) A microsatellite marker linked to leaf rust resistance transferred from Ae. triuncialis into hexaploid wheat. Plant Breeding 120:259–261Google Scholar
  4. Aghaee-Sarbarzeh M, Ferrahi M, Singh S, Singh H, Friebe B, Gill BS, Dhaliwal HS (2002) Ph1 induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculata to bread wheat. Euphytica 127:377–382Google Scholar
  5. Athwal RS, Kimber G (1972) The pairing of an alien chromosome with homoeologous chromosomes of wheat. Can J Genet Cytol 14:325–333Google Scholar
  6. Autrique E, Singh RP, Tanksley SD, Sorrels ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38:75–83PubMedGoogle Scholar
  7. Bálint AF, Kovács G, Sutka J (2000) Origin and taxonomy of wheat in the light of recent research. Acta Agr Hung 48:301–313Google Scholar
  8. Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482PubMedGoogle Scholar
  9. Barloy D, Lemoine J, Dedryver F, Jahier J (2000) Identification of molecular markers linked to the Aegilops variabilis-derived root knot nematode resistance gene Rkn-mn1 in wheat. Plant Breeding 118:169–172Google Scholar
  10. Belea A (1992) Interspecific and intergeneric crosses in cultivated plants. Mezőgazdasági Kiadó, Budapest, pp 54–66Google Scholar
  11. Belyayev A, Raskina O, Nevo E (2001) Detection of alien chromosomes from S-genome species in the addition/substitution lines of bread wheat and visualization of A-, B- and D-genomes by GISH. Hereditas 135:119–22Google Scholar
  12. Benavente E, Alix K, Dusautoir JC, Orellana J, David JL (2001) Early evolution of the chromosomal structure of Triticum turgidum—Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theor Appl Genet 103:1123–1128Google Scholar
  13. Biagetti M, Vitellozzi F, Ceoloni C (1999) Physical mapping of wheat–Aegilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low copy DNA probes. Genome 42:1013–1019Google Scholar
  14. Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M (1995) RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor Appl Genet 90:1042–1048Google Scholar
  15. Bowden WM (1959) The taxonomy and nomenclature of the wheats, barleys, and ryes and their wild relatives. Can J Bot 37:657–684Google Scholar
  16. Cabrera A, Martin A (1992). A trigeneric hybrid between Hordeum, Aegilops and Secale. Genome 35:647–649Google Scholar
  17. Castilho A, Miller TE, Heslop-Harrison JS (1996) Physical mapping of translocation breakpoints in a set of wheat–Aegilops umbellulata recombinant lines using in situ hybridization. Theor Appl Genet 93:816–825Google Scholar
  18. Castilho A, Miller TE, Heslop-Harrison JS (1997) Analysis of a set of homoeologous group 1 wheat–Aegilops umbellulata recombinant chromosome lines using genetic markers. Theor Appl Genet 94:293–297Google Scholar
  19. Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454Google Scholar
  20. Ceoloni C, Del Signore G, Pasquini M, Testa A (1988) Transfer of mildew resistance from Triticum longissimum into wheat by Ph1 induced homeologous recombination. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp, Institute of Plant Science Research, Cambridge, UK, pp 221–226Google Scholar
  21. Ceoloni C, Del Signore G, Ercoli L, Donini P (1992) Locating the alien chromatin segment in wheat–Aegilops longissima mildew resistant transfers. Hereditas 116:239–245Google Scholar
  22. Ceoloni C, Biagetti M, Ciaffi M, Forte P, Pasquiri M (1996) Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum. Euphytica 89:87–97Google Scholar
  23. Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504Google Scholar
  24. Chen PD, Tsujimoto H, Gill BS (1994) Transfer of Ph 1 genes promoting homeologous pairing from Triticum speltoides to common wheat. Theor Appl Genet 88:97–101Google Scholar
  25. Cherukuri DP, Gupta SK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR (2005) Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica 143:19–26Google Scholar
  26. Chueca MC, Cauderon Y, Temple J (1977) In-vitro embyo culture technique to obtain Triticum aestivum x Aegilops species hybrids. Ann Amaelior Plant 27:539–546Google Scholar
  27. Cifuentes M, Blein M, Benavente E (2006) A cytomolecular approach to assess the potential of gene transfer from a crop (Triticum turgidum L.) to a wild relative (Aegilops geniculata Roth.). Theor Appl Genet 112:657–664PubMedGoogle Scholar
  28. Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078PubMedGoogle Scholar
  29. Conner RL, MacDonald MD, Whelan EDP (1988) Evaluation of take-all resistance in wheat–alien amphiploid and chromosome substitution lines. Genome 30:597–602Google Scholar
  30. Cox T, Gill BS (1992) Use of diploid progenitors to improve leaf rust resistance in hexaploid wheat. Votr Planzenzücht 24:185–187Google Scholar
  31. Cox TS, Hatchett JH (1994) Hessian fly resistance gene H26 transferred from Triticum tauschii to common wheat. Crop Sci 34:958–960CrossRefGoogle Scholar
  32. Cox TS, Raupp WJ, Gill BS (1994) Leaf rust-resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci 34:339–343CrossRefGoogle Scholar
  33. Damania AB, Pecetti L (1990) Variability in a collection of Aegilops species and evaluation for yellow rust resistance at two locations in Northern Syria. J Genet Breed 44:97–102Google Scholar
  34. Delibes A, Otero C, Garcia-Olmedo F (1981) Biochemical markers associated with two Mv chromosomes from Aegilops ventricosa in wheat–Aegilops addition lines. Theor Appl Genet 60:5–10Google Scholar
  35. Delibes A, Romero D, Aguaded S, Duce A, Mena M, López-Braña I, Andrés MF, Martín-Sanchez JA, García-Olmedo F (1993) Resistance to cereal cyst nematode (Heterodera avenae Woll.) transferred from the wild grass Aegilops ventricosa to hexaploid wheat by a “stepping stone” procedure. Theor Appl Genet 87:402–408Google Scholar
  36. Delibes A, Del Moral J, Martín-Sanchez JA, Mejías A, Gallego M, Casado D, Sin E, López-Braña I (1997a) The Hessian fly-resistance gene transferred from chromosome 4Mv of Aegilops ventricosa to Triticum aestivum. Theor Appl Genet 94:858–864Google Scholar
  37. Delibes A, Lopez-Braña I, Martín-Sánchez JA, Sin E, Martinez C, Michelena A, Del Moral J, Mejias A (1997b) Transfer of one gene for resistance to Hessian fly (Mayetiola destructor) from Aegilops ventricosa to cultivars of wheat. Ann Wheat Newslett 43:214–215Google Scholar
  38. Dégen Á (1917) New wild species mixture of wheat. MTA Matem Tud Ért 3–4:459–477Google Scholar
  39. Dhaliwal HS, Harjit-Singh, William M (2002) Transfer of rust resistance from Aegilops ovata into bread wheat (Triticum aestivum L.) and molecular characterisation of resistant derivatives. Euphytica 126:153–159Google Scholar
  40. Diaz-Salazar J, Orellana J (1995) Aegilops searsii species-specific DNA and chromosome markers. Chromosome Res 3:99Google Scholar
  41. Dimov A, Zaharieva M, Mihova S (1993) Rust and powdery mildew resistance in Aegilops accessions from Bulgaria. In: Damania AB (ed) Biodiversity and wheat improvement. John Wiley & Sons, New York, pp 165–169Google Scholar
  42. Donini P, Koebner RMD, Ceoloni C (1995) Cytogenetic and molecular mapping of the wheat–Aegilops longissima chromatin breakpoints in powdery mildew resistant introgression lines. Theor Appl Genet 91:738–743Google Scholar
  43. Dosba F, Doussinault G, Rivoal R (1978) Extraction, identification and utilization of the addition lines T. aestivum–Ae. ventricosa. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp, Indian Soc Genetics & Plant Breeding, New Delhi, India, pp 332–337Google Scholar
  44. Doussinault G, Delibes A, Sanchez-Monge R, Garcia-Olmedo F (1983) Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature 303:698–700Google Scholar
  45. Dover GA (1973) The genetics and interactions of ‘A’ and ‘B’ chromosomes controlling meiotic chromosome pairing in the Triticeae. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Gen Symp, University of Missouri, Columbia, USA, pp 653–667Google Scholar
  46. Driscoll CJ (1974) Wheat–Triticum kotschyi (Aegilops variabilis) (2n = 28) addition lines. EWAC Newslett 4:60Google Scholar
  47. Driscoll CJ (1975) First compendium of wheat–alien chromosome lines. Ann Wheat Newslett 21:16–32Google Scholar
  48. Driscoll CJ (1976) Second compendium of wheat–alien chromosome lines. Ann Wheat Newslett 22:4–5Google Scholar
  49. Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660CrossRefGoogle Scholar
  50. Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141Google Scholar
  51. Dvorak J (1998) Genome analysis in the Triticum–Aegilops alliance. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp, University of Saskatchewan Ectension Press, Saskatoon, Saskatchewan, Canada, pp 8–11Google Scholar
  52. Dvorak J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33:892–897Google Scholar
  53. Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult plant leaf resistance derived from Aegilops squarrosa. Can J Genet Cytol 12:175–180Google Scholar
  54. Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to the cereal cyst nematode (Heterodera avenae). Aust J Agric Res 42:69–77Google Scholar
  55. Eig A (1929) Monographisch-kritische Übersicht der Gattung Aegilops. Feddes Repertorium Specierum Novarum regni Vegetabilis Beih 55:1–228Google Scholar
  56. Endo TR (1996) Allocation of a gametocidal chromosome of Aegilops cylindrica to wheat homoeologous group 2. Genes Genet Syst 71:243–246Google Scholar
  57. Endo TR, Katayama Y (1978) Finding of a selectively retained chromosome of Aegilops caudata L. in common wheat. Wheat Inf Serv 47, 48:32–35Google Scholar
  58. Endo TR, Tsunewaki K (1975) Sterility of common wheat with Aegilops triuncialis cytoplasm. J Hered 66:13–18Google Scholar
  59. Eser V (1998) Characterisation of powdery mildew resistant lines derived from crosses between Triticum aestivum and Aegilops speltoides and Ae. mutica. Euphytica 100:269–272Google Scholar
  60. Farooq S, Iqbal N, Shah TM (1990) Promotion of homeologous chromosome pairing in hybrids of Triticum aestivum × Aegilops variabilis. Genome 33:825–828Google Scholar
  61. Fedak G (1998) Procedures for transferring agronomic traits from alien species to crop plants. In: Slinkard AE (ed) Proc 9th int wheat genet symp, University of Saskatchewan, Saskatoon, Saskatchewan, Canada, pp 1–7Google Scholar
  62. Feldman M (1975) Alien addition lines of common wheat containing Triticum aestivum chromosomes. Proc 12th Int Bot Cong, Leningrad, p 506Google Scholar
  63. Feldman M (2001) The origin of cultivated wheat. In: Bonjean AP, Angus WJ (eds) The world wheat book. A history of wheat breeding. Lavoisier Tech & Doc, Paris, pp 3–56Google Scholar
  64. Feldman M, Lupton FGH, Miller TE (1995) Wheats. Triticum spp. (Gramineae-Triticinae). In: Smartt J, NW Simmonds (eds) Evolution of crop plants, 2nd edn. Longman Scientific & Technical Press, pp 184–192Google Scholar
  65. Flinn MB, Smith CM, Reese JC, Gill BS (2001) Categories of resistance to greenbug (Homoptera: Aphididae) biotype I in Aegilops tauschii germplasm. J Econ Entomol 94:558–563PubMedGoogle Scholar
  66. Friebe B, Mukai Y, Dhaliwal HS, Martin TJ, Gill BS (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat grem plasm by C-banding and in situ hybridization. Theor Appl Genet 81:381–389Google Scholar
  67. Friebe B, Schubert V, Blüthner WD, Hammer K (1992) C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum–Ae. caudata and six derived chromosome addition lines. Theor Appl Genet 83:589–596Google Scholar
  68. Friebe B, Jiang J, Tuleen N, Gill BS (1995a) Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor Appl Genet 90:150–156Google Scholar
  69. Friebe B, Tuleen NA, Gill BS (1995b) Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet 91:248–254Google Scholar
  70. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996a) Characterization of wheat alien translocations conferring resistance to diseases and pests: current status. Euphytica 71:59–87Google Scholar
  71. Friebe B, Tuleen NA, Badaeva ED, Gill BS (1996b) Cytogenetic identification of Triticum peregrinum chromosomes added to common wheat. Genome 39:272–276PubMedCrossRefGoogle Scholar
  72. Friebe B, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum–Aegilops geniculata chromosome addition lines. Genome 42:374–380Google Scholar
  73. Friebe B, Qi LL, Nasuda A, Zhang P, Tuleen NA, Gill BS (2000) Development of a complete set of Triticum aestivum–Aegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58Google Scholar
  74. Gale MD, Miller TE (1967) The introduction of alien genetic variation in wheat. In: Lupton FGH (ed) Wheat breeding. Chapman and Hall, London, pp 173–210Google Scholar
  75. Gandhi HT, Vales MI, Christy CJW, Mallory-Smith CA, Mori N, Rehman M, Zemetra RS, Riera-Lizarazu O (2005) Chloroplast and nuclear microsatellite analysis of Aegilops cylindrica. Theor Appl Genet 111:561–572PubMedGoogle Scholar
  76. Gill BS, Kimber G (1974) Giemsa C-banding evolution of wheat. Proc. Nat. Acad. Sci. USA 71:4086–4090PubMedGoogle Scholar
  77. Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450CrossRefGoogle Scholar
  78. Gill BS, Browder LE, Hatchett JH, Harvey TL, Martin TJ, Raupp WJ, Sharma HC, Waines JG (1983) Disease and insect resistance in wild wheats. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Faculty of Agricultuire, Kyoto University, Japan, pp 785–792Google Scholar
  79. Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvey TL (1985) Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and greenbug. Plant Breeding 69:314–316Google Scholar
  80. Gill BS, Hatchett JH, Raupp WJ (1987) Chromosomal mapping of Hessian fly resistance gene H13 in the D genome of wheat. J Heredity 78:97–100Google Scholar
  81. Gold J, Hardner D, Towley-Smith F, Aung T, Procunier J (1999) Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol 2(1) http://www.ejbiotechnology.info/content/vol2/issue1/full/1/
  82. Groenewald JZ, Marais AS, Marais GF (2003) Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat. Plant Breeding 122:83–85Google Scholar
  83. Gupta SK, Charpe A, Koul S, Prabhu KV, Haq QMR (2005) Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf-rust-resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome 48:823–830PubMedGoogle Scholar
  84. Hammer K (1980) Vorarbeiten zur Monographischen Darstellung von Wildpflanzen sortimenten: Aegilops L. Kulturpflanze 28:33–180Google Scholar
  85. Hart GE, Tuleen NA (1983) Characterizing and selecting alien genetic material in derivatives of wheat–alien species hybrids by analyses of isozyme variation. In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp, Faculty of Agricultuire, Kyoto University, Japan, pp 377–385Google Scholar
  86. Helguera M, Khan IA, Dubcovsky J (2000) Development of PCR markers for wheat leaf rust resistance gene Lr47. Theor Appl Genet 100:1137–1143Google Scholar
  87. Helguera M, Khan IA, Kolmer J, Lijavetzki D, Zhong QL, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847CrossRefGoogle Scholar
  88. Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734CrossRefGoogle Scholar
  89. Hohmann U, Endo TR, Herrmann RG, Gill BS (1995) Characterization of deletions in common wheat induced by an Aegilops cylindrica chromosome: detection of multiple chromosome rearrangements. Theor Appl Genet 91:611–617Google Scholar
  90. Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat–Aegilops speltoides translocation line. Euphytica 133:367–370Google Scholar
  91. Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013Google Scholar
  92. Huguet-Robert V, Dedryver F, Röder MS, Korzun V, Abélard P, Tanguy AM, Jaudeau B, Jahier J (2001) Isolation of a chromosomally engineered durum wheat line carrying the Aegilops ventricosa Pch1 gene for resistance to eyespot. Genome 44:345–349PubMedGoogle Scholar
  93. Hussien T, Bowden RL, Gill BS, Cox TS (1997) Chromosomal location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat. Crop Sci 37:1764–1766CrossRefGoogle Scholar
  94. Hutchinson J, Chapman V, Miller TE (1980) Chromosome pairing at meiosis in hybrids between Aegilops and Secale species: a study by in situ hybridisation using cloned DNA. Heredity 45:245–254Google Scholar
  95. Iqbal N, Reader SM, Caligari PDS, Miller TE (2000) Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor Appl Genet 102:1173–1179Google Scholar
  96. Jahier J, Doussinault G, Dosba F, Bourgeois F (1979) Monosomic analysis of resistance to eyespot in the variety “Roazon”. In: Ramanujam S (ed) Proc 5th Int Wheat Genet Symp, Indian Society of Genetics and Plant Breeding, IARI, New Delhi, India, pp 437–440Google Scholar
  97. Jahier J, Tanguy AM, Abelard P, Rivoal R (1996) Utilization of deletions to localize a gene for resistance to cereal cyst nematode, Heterodera avenae, on an Aegilops ventricosa chromosome. Plant Breeding 115:282–284Google Scholar
  98. Jahier J, Abelard P, Tanguy AM, Dedryver R, Rivoal R, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the cultivar VPM1 carries the cereal cyst nematode gene Cre5. Plant Breeding 120:125–128Google Scholar
  99. Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583Google Scholar
  100. Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565CrossRefGoogle Scholar
  101. Jiang J, Friebe B, Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73:199–212Google Scholar
  102. Jovkova ME, Kondeva E, Kostova R (1977) Biochemical investigations on Aegilops crassa x Triticum aestivum hybrids. Genet Sel 10:91–98Google Scholar
  103. Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci 27:204–206CrossRefGoogle Scholar
  104. Kerber ER, Dyck PL (1979) Resistance to stem rust and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S (ed) Proc. 5th Int Wheat Genet Symp, Indian Society of Genetics and Plant Breeding, IARI, New Delhi, India, pp 358–364Google Scholar
  105. Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides × Triticum monococcum. Genome 33:530–537Google Scholar
  106. Kihara H (1937) Genomanalyse bei Triticum und Aegilops. VII. Kurze übersicht über die Ergebnisse der Jahre 1934–36. Mem Coll Agr, Kyoto Imp Univ 41:1–61Google Scholar
  107. Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia 19:336–357Google Scholar
  108. Kimber G (1967) The addition of the chromosomes of Aegilops umbellulata to Triticum aestivum var. Chinese Spring. Gen Res Camb 9:111–114Google Scholar
  109. Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement, 2nd Ed. American Society of Agronomy, Madison, WI, pp 154–164Google Scholar
  110. Knott DR, Dvorak J (1976) Alien germplasm as a source of resistance to disease. Ann Rev Phytopath 14:211–235Google Scholar
  111. Koebner RMD, Shepherd KW (1987) Allosyndetic recombination between a chromosome of Aegilops umbellulata and wheat chromosomes. Heredity 59:33–45Google Scholar
  112. Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007) Characterization and mapping of cryptic introgression from Ae. geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114:1379–1389PubMedGoogle Scholar
  113. Kynast RG, Friebe B, Gill BS (2000) Fate of multicentric and ring chromosomes induced by a new gametocidal factor located on chromosome 4Mg of Aegilops geniculata. Chromosome Res 8:133–139PubMedGoogle Scholar
  114. Lapochkina IF, Solomatin DA, Serezhkina GV, Grishina EE, Vishnykova KhS, Pukhalskiy VA (1996) Common wheat lines with genetic material from Aegilops speltoides Tausch. Russ J Genet 32:1438–1442Google Scholar
  115. Leighty G, Taylor JW (1927) Studies in natural hybridization of wheat. J Agric Res 3:865–887Google Scholar
  116. Lelley J, Rajháthy T (1955) Wheat breeding. Akadémiai Kiadó, Budapest pp150 and pp 287–291Google Scholar
  117. Lelley T, Stachel M, Grausguber H, Vollmann J (2000) Analysis relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668PubMedGoogle Scholar
  118. Linc G, Friebe B, Kynast RG, Molnár-Láng M, Kőszegi B, Sutka J, Gill BS (1999) Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42:497–503PubMedGoogle Scholar
  119. Logojan AA, Molnár-Láng M (2000) Production of Triticum aestivum—Aegilops biuncialis chromosome additions. Cereal Res Commun 28:221–228Google Scholar
  120. Lutz J, Hsam LK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat) 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156Google Scholar
  121. Ma ZQ, Gill BS, Sorrels ME, Tanksley SD (1993) RFLP markers linked to two Hessian fly–resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (Coss.) Schmalh. Theor Appl Genet 85:750–754Google Scholar
  122. Ma ZQ, Sorrels ME, Tanksley SD (1994) RFLP markers linked to powdery mildew resistane genes Pm1, Pm2, Pm3 and Pm4. Genome 37:871–875PubMedGoogle Scholar
  123. Maan SS (1975) Exclusively preferential transmission of an alien chromosome in wheat. Crop Sci 15:287–292CrossRefGoogle Scholar
  124. Mac Key J (1966) Species relationships in Triticum. In: Findlay KW, Shepherd KW (eds) Proc 2nd Int Wheat Genet Symp, Hereditas, Suppl 2:237–276Google Scholar
  125. Martin TJ, Harvey TL, Hatchett JH (1982) Registration of greenbug and Hessian fly resistant wheat germplasm. Crop Sci 22:1089CrossRefGoogle Scholar
  126. Martín-Sanchez JA, Gómez-Colmenajero M, Del Moral J, Sin E, Montes MJ, González-Belinchon C, López-Braña I, Delibes A (2003) A new Hessian fly resistance gene (H30) transferred from the wild grass Aegilops triuncialis to hexaploid wheat. Theor Appl Genet 106:1248–1255PubMedGoogle Scholar
  127. McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034Google Scholar
  128. McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-testing hexaploid relatives. J Heredity 37:107–116Google Scholar
  129. McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzüht 89:295–306Google Scholar
  130. McIntosh RA (1988) Catalogue of gene symbols for wheat. In: Koebner R, Miller TE (eds) Proc 7th Int Wheat Genet Symp. Institute of Plant Science Research, Cambridge, UK pp 1225–1324Google Scholar
  131. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Published by CSIRO Australia in conjunction with Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  132. McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th Int Wheat Genet Symp Vol 4, Instituto Sperimentale per la Cerealcoltura, Rome pp 27–29Google Scholar
  133. Miller TE (1983) Preferential transmission of alien chromosomes in wheat. In: Brandham PE, Bennett MD (eds) Proc 2th Kew Chromosome Conf, George Allen & Unwin, London, pp 173–182Google Scholar
  134. Miller TE (1984) The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can J Genet Cytol 26:578–589Google Scholar
  135. Miller TE, Hutchinson J, Chapman V (1982) Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor Appl Genet 61:27–33Google Scholar
  136. Miller TE, Reader SM, Ainsworth CC, Summers RW (1987) The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici from Aegilops speltoides into wheat, T. aestivum. In: Jorna ML, Shootmaker LAJ (eds) Cereal breeding related to integrated cereal production: Proc Eucarpia Conf, Wageningen, The Netherlands, pp 179–183Google Scholar
  137. Miller TE, Reader SM, Singh D (1988) Spontaneous non-Robertsonian translocations between wheat chromosomes and an alien chromosome. In: Koebner R, Miller TE (eds) Proc 7th Int Wheat Genet Symp, Institute of Plant Science Research, Cambridge, UK, pp 387–390Google Scholar
  138. Millet E, Avivi Y, Zaccai M, Feldman M (1988) The effect of substitution of 5Sl of Aegilops longissima for its wheat homeologues on spike morphology and on several quantitative traits. Genome 30:473–478Google Scholar
  139. Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456PubMedGoogle Scholar
  140. Molnár I, Gáspár L, Sárvári É, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Funct Plant Biol 31:1149–1159Google Scholar
  141. Molnár I, Schneider A, Molnár-Láng M (2005) Demonstration of Aegilops biuncialis chromosomes in a wheat background by genomic in situ hybridization (GISH) and identification of U chromosomes by FISH using GAA sequences. Cereal Res Commun 33:673–680Google Scholar
  142. Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. American Society of Agronomy, Madison, USA, pp 19–87Google Scholar
  143. Muramatsu M (1973) Genic homology and cytological differentiation of the homeologous-group-5 chromosomes of wheat and related species. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Gen Symp. University of Missouri, Columbia, USA, pp 719–724Google Scholar
  144. Naik S, Gill KS, Prakasa RVS, Gupta VS, Tamhankara RSA, Pujar S, Gill BS, Ranjekar PK (1998) Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor Appl Genet 97:535–540Google Scholar
  145. Naranjo T, Maestra B (1995) The effect of ph mutations on homeologous pairing in hybrids of wheat with Triticum longissimum. Theor Appl Genet 91:1265–1270Google Scholar
  146. Nasuda S, Friebe B, Busch W, Kynast RG, Gill BS (1998) Structural rearrengement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat–Ae. comosa translocations in wheat improvement. Theor Appl Genet 96:780–785Google Scholar
  147. Netzle S, Zeller FJ (1984) Cytogenetic relationship of Aegilops longissima chromosomes with common wheat chromosomes. Pl Syst Evol 145:1–13Google Scholar
  148. Orellana J, Vazquez JF, Carrillo JM (1989) Genome analysis in wheat–rye–Aegilops caudata trigeneric hybrids. Genome 32:169–172Google Scholar
  149. Ozkan H, Feldman M (2001) Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrina. Genome 44:1000–1006PubMedGoogle Scholar
  150. Peil A, Korzun V, Schubert V, Scumann E, Weber WE (1997) RAPDs as molecular markers for the detection of Aegilops markgrafii chromatin in addition an euploid introgression lines of hexaploid wheat. Theor Appl Genet 94:934–940Google Scholar
  151. Peil A, Korzun V, Schubert V, Schumann E, Weber WE, Roeder MS (1998) The application of wheat microsatellites to identify disomic Triticum aestivum and Aegilops markgrafii addition lines. Theor Appl Genet 96:138–146Google Scholar
  152. Pietro ME, Tuleen NA, Hart GE (1988) Development of wheat –Triticum searsii disomic chromosome addition lines. In: Koebner R, Miller TE (eds) Proc 7th int wheat gen symp. Institute of Plant Science Research, Cambridge, UK, pp 409–413Google Scholar
  153. Popova G, (1923) Species of Aegilops and their mass hybridization with wheat in Turkestan. Ball Appl Bot 13:461–482Google Scholar
  154. Rajháthy T (1954) Genetic investigation of interspecific wheat hybrids. Acta Agron Hung 4:203–237Google Scholar
  155. Raupp WJ, Gill BS, Browder LE (1983) Leaf rust resistance in Aegilops squarrosa L. its transfer and expression in common wheat (Triticum aestivum L.). Phytopathology 73:818Google Scholar
  156. Raupp WJ, Amri A, Hatchett JH, Gill BS, Wilson DL, Cox TS (1993) Chromosomal location of Hessian fly-resistance genes H22, H23 and H24 derived from Triticum tauschii in the D genome of wheat. J Heredity 84:142–145Google Scholar
  157. Raupp WJ, Gill BS, Friebe B, Wilson DL, Cox TS, Sears RG (1995) The Wheat Genetics Resource Center: Germ plasm conservation, evaluation and utilization. In: Li ZS, Xin ZY (eds) Proc 8th Int Wheat Genet Symp, China Agricultural Scientech Press, Beijing, China pp 469–475Google Scholar
  158. Raupp WJ, Friebe B, Wilson DL, Cox TS, Gill BS (1997) Kansas State’s Wheat Genetics Resource Center provides unique oasis for germplasm research. Diversity 13:21–23Google Scholar
  159. Raupp WJ, Sukhwinder-Singh, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352Google Scholar
  160. Reader SM, Miller TE (1987) The simultaneous substitution of two pairs of chromosomes from two alien species in Triticum aestivum cv. Chinese Spring.Cer Res Comm 15:39–42Google Scholar
  161. Riley R, Chapman V, Macer RCF (1966) The homology of an Aegilops chromosome causing stripe rust resistance. Can J Genet Cytol 8:616–636Google Scholar
  162. Riley R, Chapman V, Johnsson R (1968) The incorporation of alien disease resistance to wheat by genetic interference with regulation of meiotic chromosome synapsis. Genet Res Camb 12:199–219Google Scholar
  163. Riley R, Chapman V, Miller TE (1971) Ann Rep Plant Breeding Inst, Cambridge (see Shepherd and Islam 1988)Google Scholar
  164. Riley R, Chapman V, Miller TE (1973) The determination of meiotic chromosome pairing. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp, University of Missouri, Columbia, USA, pp 731–738Google Scholar
  165. Rivoal R, Dosba F, Jahier J, Pierre JS (1986) Wheat–Aegilops ventricosa Tausch. addition lines. VI. Study of the chromosomal location of resistance to Heterodera avenae Woll. Agronomie 6:143–148Google Scholar
  166. Robert O, Abelard C, Dedryver F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed 5:167–175Google Scholar
  167. Romero MD, Montes MJ, Sin E, López-Brana I, Duce A, Martín-Sánchez JA, Andrés MF, Delibes A, (1998) A cereal cyst nematode (Heterodera avenae Woll) resistance gene transferred from Aegilops ventricosa to hexaploid wheat. Theor Appl Genet 96:1135–1140Google Scholar
  168. Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144Google Scholar
  169. Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618PubMedGoogle Scholar
  170. Schachermayr G, Siedler H, Gale MD, Winzeler H, Keller B (1994) Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor Appl Genet 88:110–115Google Scholar
  171. Schneider A, Linc G, Molnár I, Molnár-Láng M (2005) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheat/Aegilops biuncialis disomic addition lines. Genome 48:1070–1082PubMedGoogle Scholar
  172. Schubert V (1989) Untersuchungen an Triticum aestivum–Aegilops markgrafii Kreuzungen und die Nutzung hochrepetitiver DNA Sequenzen in der squash dot technik. Thesis, Martin-Luther University, Halle-WittenbergGoogle Scholar
  173. Schubert V, Blüthner WD (1995) Triticum aestivum-Aegilops markgrafii addition lines: production and morphology. In: Li ZS, Xin ZY (eds) Proc. 8th Wheat Int Genet Symp, China Agricultural Scientech Press, Beijing, China, pp 421–425Google Scholar
  174. Seah S, Bariana H, Jahier J, Sivasithamparam K, Lagudah ES (2001) The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be analysed by a cloned disease resistance gene-like sequence. Theor Appl Genet 102:600–605Google Scholar
  175. Sears ER (1956) The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp in Biol 9:1–22Google Scholar
  176. Sears ER (1977) An induced mutant with homoeologous pairing in common wheat. Can J Genet Cytol 19:585–593Google Scholar
  177. Sears ER (1984) Mutations in wheat that raise the level of meiotic chromosome pairing. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Press, New York, pp 295–300Google Scholar
  178. Sepsi A, Németh K, Molnár I, Szakács É, Molnár-Láng M (2006) Induction of chromosome rearrangements in a 4H(4D) wheat–barley substitution using a wheat line containing a Ph suppressor gene. Cereal Res Commun 34:1215–1222Google Scholar
  179. Seyfarth R, Feuillet C, Schachermayr G, Winzeler M, Keller B (1999) Development of a molecular marker for the adult plant-leaf rust resistance gene Lr35 in wheat. Theor Appl Genet 99:554–560Google Scholar
  180. Sharma NC (1979) Irregular meiosis in wheat Triticum aestivum x Aegilops sharonensis hybrid. Cell Chromosome Newsletter 2:14–16Google Scholar
  181. Sharma HC, Gill BS (1983) Current status of wide hybridization in wheat. Euphytica 32:17–31Google Scholar
  182. Shepherd KW, Islam AKMR (1988) Fourth compendium of wheat–alien chromosome lines. In: Koebner R, Miller TE (eds) Proc 7th Int Wheat Genet Symp, Institute of Plant Science Research, Cambridge, UK, pp 1373–1395Google Scholar
  183. Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591PubMedGoogle Scholar
  184. Slageren MW van (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University, Wageningen; International Center for Agricultural Research in Dry Areas, Aleppo, SyriaGoogle Scholar
  185. Smith CM, Starkey S (2003) Resistance to greenbug (Homoptera: Aphididae) biotype I in Aegilops tauschii synthetic wheats. J Econ Entemol 96:1571–1576CrossRefGoogle Scholar
  186. Spetsov P, Mingeot D, Jacquemin JM, Samardjieva K, Marinova E (1997) Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93:49–54Google Scholar
  187. Stepien L, Chen Yu, Chelkowski J, Kowalczyk K, Chen Y (2001) Powdery mildew resistance genes in wheat: verification of STS markers. J Appl Genet 42:413–423PubMedGoogle Scholar
  188. Stoilova T, Spetsov P (2006) Chromosome 6U from Aegilops geniculata Roth carrying powdery mildew resistance in bread wheat. Breeding Sci 56:351–357Google Scholar
  189. Synder JR, Mallory-Smith CA, Balter S, Hansen JL, Zemetra RS (2000) Seed production on Triticum aestivum by Aegilops cylindrica hybrids in the field. Weed Sci 48:588–593Google Scholar
  190. Tsujimoto H, Tsunewaki K (1983) Genetic analyses on a gametocidal gene originated from Aegilops aucheri. In: Sakamoto S (ed) Proc 6th Int Wheat Gen Symp, Faculty of Agriculture, Kyoto University, Japan pp 1077–1081Google Scholar
  191. Tsujimoto H, Tsunewaki K (1984) Gametocidal genes in wheat and its relatives. I. Genetic analysis in common wheat of a gametocidal gene derived from Aegilops speltoides. Can J Genet Cytol 26:78–84Google Scholar
  192. Vanzetti LR, Brevis JK, Dubcovsky J, Helguera M (2006) Identification of microsatellites linked to Lr47 Electronic J Biotech 9(3) http://www.ejbiotechnology.info/content/vol9/issue3/full/23/index.html
  193. Vavilov NI (1935) Theoretishe Grundlagen der Pflanzenzüchtung. Staatsverlag, Moscow-LeningradGoogle Scholar
  194. Vikal Y, Chhuneja P, Singh R, Dhaliwal HS (2004) Tagging of an Aegilops speltoides derived leaf rust resistance gene Lr28 with a microsatellite marker in wheat. J Plant Biochem Biotechnol 13:47–49Google Scholar
  195. Wang ZN, Hang A, Hansen J, Burton C, Mallory-Smith CA, Zemetra RS (2000) Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) × jointed goatgrass (Aegilops cylindrica Host) backcross progenies. Genome 43:1038–1044PubMedGoogle Scholar
  196. Wells DG, Kota RS, Sandhu HS, Gardner WAS, Finney KF (1982) Registration of one disomic substitution line and five translocation lines of winter wheat germplasm resistant to wheat streak mosaic virus. Crop Sci 22:1277–1278CrossRefGoogle Scholar
  197. Weng Y, Lazar MD (2002) Amplified fragment length polymorphism- and simple sequence repeat-based molecular tagging and mapping of greenbug resistance gene Gb3 in wheat. Plant Breeding 121:218–223Google Scholar
  198. Witcombe JR (1983) A guide to the species of Aegilops L.: their taxonomy, morphology, and distribution. International Board for Plant Genetic Resources (IPGRI), Rome, Italy, 74ppGoogle Scholar
  199. Yu MQ, Person-Dedryver F, Jahier J (1990) Resistance to root knot nematode, Meloidogyne naasi (Franklin) transferred from Aegilops variabilis Eig. to bread wheat. Agronomie 6:451–456Google Scholar
  200. Zaharieva M, Monneveux P, Henry M, Rivoal. R, Valkoun J, Nachit MM (2001) Evaluation of a collection of wild wheat relative Aegilops geniculata Roth and identification of potential sources for useful traits. Euphytica 119:33–38Google Scholar
  201. Zeller FJ, Konig L, Hartl L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) 7. Gene Pm29 in line Pova. Euphytica 123:187–194Google Scholar
  202. Zemetra RS, Hansen J, Mallory-Smith CA (1998) Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci 46:313–317Google Scholar
  203. Zhang H, Jia J, Gale MD, Devos KM (1998) Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet 96:69–75Google Scholar
  204. Zhu L, Smith CM, Fritz A, Boyko EV, Flinn M (2004) Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rodani). Theor Appl Genet 109:289–293PubMedGoogle Scholar
  205. Zhukovsky PM (1928) A critical systematic survey of the species of the genus Aegilops L. Bull Appl Bot, Genet and Plant Breeding 18:497–609Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Annamária Schneider
    • 1
  • István Molnár
    • 1
  • Márta Molnár-Láng
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations