Skip to main content

Advertisement

Log in

CO2-assimilation and chlorophyll fluorescence as indirect selection criteria for host tolerance against Striga

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Striga hermonthica (Del.) Benth. is a parasitic weed on tropical cereals causing serious yield losses in Africa. The use of host crop varieties with improved resistance and tolerance against this parasite is a key component of an integrated control strategy. Breeding for tolerance is however seriously hampered by the absence of reliable and yet practical selection measures. The observation that the photosynthetic rate of tolerant genotypes is less sensitive to Striga infection was used as a starting point to search for suitable selection measures. In a greenhouse pot experiment the effect of Striga infection on the photosynthesis of four sorghum (Sorghum bicolor [L.] Moench) genotypes, differing in Striga tolerance level, was measured at three moments in time (26, 48 and 75 days after sowing). Genotypes were CK60-B, E36-1, Framida and Tiémarifing. Measurements involved CO2-assimilation (A) and three chlorophyll fluorescence characteristics (electron transport rate through photosystem II [ETR], photochemical [Pq] and non-photochemical quenching [NPq]). Striga infection negatively affected A, ETR and Pq. Based on A and Pq, genotypes with superior levels of tolerance (Tiémarifing) could be discriminated from genotypes with superior level of resistance (Framida). Both A and Pq showed high heritabilities and consequently clear and predictable differences between genotypes. Using discriminative ability, heritability and cost effectiveness as main criteria, photochemical quenching (Pq) was concluded to possess the highest potential to serve as indirect selection measure for host plant tolerance to Striga. Screening should preferably be conducted at relatively high Striga infestation levels, between Striga emergence and host plant flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A :

Leaf CO2-assimilation rate (μmol CO2 m−2 s−1)

ETR :

The electron transport rate through photosystem II (μmol m−2 s−1)

f abs :

The absorbtivity of the leaf (−)

Fm′:

The maximum fluorescence emission induced by a saturating light pulse in the light (−)

Fm :

The maximum fluorescence emission induced by a saturating light pulse in the dark (−)

Fo′:

The basic fluorescence in the light when all PSII centres are oxidized by a period of far-red light (−)

F t :

The steady-state fluorescence emission (−)

I :

The light intensity (μmol photon m−2 s−1)

NPq :

The level of non-photochemical quenching (−)

φ2 :

The electron transport efficiency of PSII (−)

PAR:

Photosynthetically active radiation (μmol photon m−2 s−1)

PS:

Photosystem

Pq :

The level of photochemical quenching (−)

R :

Repeatability

RYL :

Relative yield loss (%)

S 2 :

Within-group variance component

S 2 A :

Among-group variance component

V EG :

General environmental variance

V ES :

Environmental variance due to temporary or localized environmental effects

V G :

Genotypic variance

V P :

Phenotypic variance

References

  • Ackroyd RD, Graves JD (1997) The regulation of the water potential gradient in the host and parasite relationship between Sorghum bicolor and Striga hermonthica. Ann Bot 80:649–656

    Article  Google Scholar 

  • Arnaud MC, Renaudin S, Villaine A, Thalouarn P (1996) Why is sorghum bicolor var Framida resistant to Striga hermonthica? A histological and molecular approach. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Sixth International Parasitic Weed Symposium, Cordoba , pp 574–580

  • Bebawi FF, Farah AF (1981) Effects of parasitic and non-parasitic weeds on sorghum. Exp Agri 17:415–418

    Google Scholar 

  • Becker, WA (1984) A manual of quantitative genetics. Academic Enterprises, Pullman, Washington

    Google Scholar 

  • Björkman O, Powles SP (1984) Inhibition of photosynthetic reactions under water stress: interaction with light level. Planta 153:376–387

    Google Scholar 

  • DeVries J (2000) The inheritance of Striga reactions in maize. In: Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW, Geiger HH (eds) Breeding for striga resistance in cereals. Margraf Verlag, Weikersheim, Ibadan, pp 73–84

  • Doggett H (1982) Factors reducing sorghum yields: Striga and birds. ICRISAT, Patancheru, pp 313–320

    Google Scholar 

  • Drennan DSH, El Hiweris SO (1979) Changes in growth regulator substances in Sorghum vulgare infected with Striga hermonthica. In: Musselman LJ, Worsham AD, Eplee RE (eds) 2nd International Symposium on Parasitic Weeds North Carolina State University, Raleigh

  • El Hiweris SO (1987) Nature of resistance to Striga hermonthica (Del.) Benth. parasitism in some Sorghum vulgare (Pers.) cultivars. Weed Res 27:305–312

    Article  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. 4th edn. Longman Group Limited, Essex

    Google Scholar 

  • FAOSTAT (2004) http://faostat.fao.org/faostat/

  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540

    Article  CAS  Google Scholar 

  • Frost DL, Gurney AL, Press MC, Scholes JD (1997) Striga hermonthica reduces photosynthesis in sorghum: the importance of stomatal limitations and a potential role for ABA. Plant Cell and Environ 20:483–492

    Article  CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990:87–92

    CAS  Google Scholar 

  • Goudriaan J, Laar HHv (1994) Modelling potential crop growth processes. Kluwer Publishers, Dordrecht

    Google Scholar 

  • Graves JD, Press MC, Stewart GR (1989) A carbon balance model of the sorghum Striga hermonthica host-parasite association. Plant Cell and Environment 12:101–108

    Article  Google Scholar 

  • Gurney AL, Press MC, Ransom JK (1995) The parasitic angiosperm Striga hermonthica can reduce photosynthesis of its sorghum and maize hosts in the field. J Exp Bot 46:1817–1823

    Article  CAS  Google Scholar 

  • Gurney AL, Press MC, Scholes JD (1999) Infection time and density influence the response of sorghum to the parasitic angiosperm Striga hermonthica. New Phytologist 143:573–580

    Article  Google Scholar 

  • Gurney AL, Taylor A, Mbwaga A, Scholes JD, Press MC (2002) Do maize cultivars demonstrate tolerance to the parasitic weed Striga asiatica? Weed Res 42:299–306

    Article  Google Scholar 

  • Harbinson J (1995) Detection of stress in pot plants. Acta Horticultura 405:320–334

    Google Scholar 

  • Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Kayentao M, Welz HG, Geiger HH (2001a) Pattern analysis of genotype X environment interaction for Striga resistance and grain yield in African sorghum trials. Euphytica 122:297–308

    Article  Google Scholar 

  • Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Kayentao M, Welz HG, Geiger HH (2001b) Quantitative-genetic parameters of sorghum growth under Striga infestation in Mali and Kenya. Plant Breed 120:49–56

    Article  Google Scholar 

  • Havaux M, Lannoye R (1985) Drought resistance of hardy wheat cultivars measured by a rapid chlorophyll fluorescence test. J Agri Sci Cambridge 104:501–504

    CAS  Google Scholar 

  • Kim SK (1991) Breeding for tolerance and general resistance in Maize: a novel approach to combating Striga in Africa. Nairobi, Kenya, pp 168–176

    Google Scholar 

  • Kling JG, Fajemisin JM, Badu Apraku B, Diallo A, Menkir A, Melake Berhan A (2000) Striga resistance breeding. In: Haussmann BIG, Hess DE, Koyama ML, Grivet L, Rattunde HFW, Geiger HH (eds) Breeding for striga resistance in cereals. Proceedings of a workshop held at IITA, Margraf Verlag, Weikersheim, Ibadan, pp 103–118

  • Lessells CM, Boag PT (1987) Unrepeatable repeatabilities: a common mistake. Auk, pp 116–121

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • Nogues S, Alegre L, Araus JL, Perez-Aranda L, Lannoye R (1994) Modulated chlorophyll fluorescence and photosynthetic gas exchange as rapid screening methods for drought tolerance in barley genotypes. Photosynthetica 30:465–474

    Google Scholar 

  • Okonkwo SNC (1966) Studies on Striga senegalensis II. Translocation of C14 labelled photosynthate, urea-C14 and sulphur-35 between host and parasite. Am J Bot 53:142–148

    Article  CAS  Google Scholar 

  • Olivier A., Ramaiah KV, Leroux GD (1991) Selection of sorghum (Sorghum bicolor (L.) Moench) varieties resistant to the parasitic weed Striga hermonthica (Del.) Benth. Weed Res 31:219–226

    Article  Google Scholar 

  • Olsovska K, Brestic M, Hudec J (2000) Use of physiological characteristics of barley (Hordeum vulgare L.) for screening genotypes tolerant to drought. Acta Fytotechnica et Zootechnica 3:103-106

    Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  PubMed  CAS  Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv/Fm without measuring Fo. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Pageau K, Simier P, Le Bizec B, Robins RJ, Fer A (2003) Characterization of nitrogen relationships between Sorghum bicolor and the root-hemiparasitic angiosperm Striga hermonthica (Del.) Benth. using K15NO3 as isotopic tracer. J Exp Bot 54:789–799

    Article  PubMed  CAS  Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. Cab International, Wallingford, Oxon

    Google Scholar 

  • Pierce S, Mbwaga AM, Press MC, Scholes JD (2003) Xenognosin production and tolerance to Striga asiatica infection of high-yielding maize cultivars. Weed Res 43:139–145

    Article  CAS  Google Scholar 

  • Prabhakara Setty TK, Hosmani MM (1981) Effect of Striga infestation of sorghum. In: ICRISAT (ed) Effect of striga infestation of sorghum. Proceedings of the Eight Asian-Pacific Weed Science Society, ICRISAT, Patancheru, India, pp 287–289

  • Press MC, Shah N, Tuohy JM, Stewart GR (1987a) Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiol 85:1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Press MC, Stewart GR (1987b) Growth and photosynthesis in sorghum-bicolor infected with Striga hermonthica. Ann Bot 60:657–662

    Google Scholar 

  • Press MC, Tuohy JM, Stewart GR (1987b) Gas exchange characteristics of the sorghum Striga host-parasite association. Plant Physiol 84:814–819

    PubMed  Google Scholar 

  • Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397–1405

    Article  CAS  Google Scholar 

  • Rodenburg J, Bastiaans L, Kropff MJ (2006a) Characterization of host tolerance to Striga hermonthica. Euphytica 147:353–365

    Article  Google Scholar 

  • Rodenburg J, Bastiaans L, Kropff MJ, Van Ast A (2006b) Effects of host plant genotype and seedbank density on Striga reproduction. Weed Res 46:251–263

    Article  Google Scholar 

  • Rodenburg J, Bastiaans L, Weltzien E, Hess DE (2005) How can field selection for Striga resistance and tolerance in sorghum be improved? Field Crops Res 93:34–50

    Google Scholar 

  • Rogers WE, Nelson RR (1962) Penetration and nutrition of Striga asiatica. Phytopathology 52:1064–1070

    Google Scholar 

  • Sauerborn J (1991) The economic importance of the phytoparasites Orobanche and Striga. In: Ransom JK, Musselman LJ, Worsham AD, Parker C (eds) Proceedings, 5th International Symposium on Parasitic Weeds, CIMMYT, Nairobi, Kenya, pp 137–143

  • Schafer JF (1971) Tolerance to plant disease. Ann Rev Phytopathol 9:235–252

    Article  Google Scholar 

  • Schapendonk AHCM, Dolstra O, Kooten Ov (1989a) The use of chlorophyll fluorescence as a screening method for cold tolerance in maize. Photosynth Res 20:235–247

    CAS  Google Scholar 

  • Schapendonk AHCM, Spitters CJT, Groot PJ (1989b) Effects of water stress on photosynthesis and chlorophyll fluoresence of five potato cultivars. Potato Res 32:17–32

    Article  Google Scholar 

  • Schapendonk AHCM, Putten PELvd, Dolstra O, Haalstra SR, Tonk WJM (1992) Chlorophyll fluorescence: a non-destructive method for detecting damage in the photosynthetic apparatus in plants. Acta Horticultura 304:61–70

    Google Scholar 

  • Scharen AL, Krupinsky JM (1969) Effect of Septoria nodorum infection on CO2 absorption and yield of wheat. Phytopathology 59:1298–1301

    Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  Google Scholar 

  • Showemimo FA (2003) Selection criteria for combining high yield and Striga resistance in Sorghum. Tropicultura 21:157–159

    Google Scholar 

  • Smith LH, Keys AJ, Evans MCW (1995) Striga hermonthica decreases photosynthesis in Zea mays through effects on leaf cell structure. J Exp Bot 46:759–765

    Article  Google Scholar 

  • Taylor A, Martin J, Seel WE (1996) Physiology of the parasitic association between maize and witchweed (Striga hermonthica): is ABA involved. J Exp Bot 47:1057–1065

    Article  CAS  Google Scholar 

  • Vasudeva Rao MJ, Chidley VL, House LR (1989) Estimates of grain yield losses caused in sorghum (Sorghum bicolor L. Moench) by Striga asiatica (L.) Kuntze obtained using the regression approach. Agri Ecosyst Environ 25:139–150

    Article  Google Scholar 

  • White PC, Wilson GL (1965) Effects of water stress on the reproductive development of sorghum vulgare pers. University of Queensland papers IV

Download references

Acknowledgements

Financial assistance for this study was made possible through the beneficence of the Netherlands Foundation for the Advancement of Tropical Research (WOTRO). We thank Wageningen University (WU), Wageningen Plants Sciences Experimental Center (WPSEC) and the Africa Rice Center (WARDA) and in particular Ans Hofman and Henriette Drenth (WU), Geurt Versteeg, Peter Saat, Taede Stoker and Henk Meurs (WPSEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonne Rodenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodenburg, J., Bastiaans, L., Schapendonk, A.H.C.M. et al. CO2-assimilation and chlorophyll fluorescence as indirect selection criteria for host tolerance against Striga . Euphytica 160, 75–87 (2008). https://doi.org/10.1007/s10681-007-9555-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9555-7

Keywords

Navigation