Skip to main content
Log in

Molecular identification of Pm12-carrying introgression lines in wheat using genomic and EST-SSR markers

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Pm12, transferred from Aegilops speltoides (2n = 2x = 14, genome SS) to wheat, confers effective resistance to powdery mildew worldwide. By applying bulked segregant analysis in a BC3F2 segregating population consisting of 305 plants, 18 wheat genomic and EST-SSR markers linked to the resistance gene were identified. Pm12 was located in the 6SS portion of the T6BS-6SS.6SL translocation chromosome based on the physical bin positions of the genomic and EST-SSR markers in the Chinese Spring group six deletion stocks and their linkage relationship to the resistance gene. Twenty eight recombinants among 305 F2 plants indicated a low frequency of recombination between the alien chromosome segment and wheat chromosome 6B. Since recombination events occurred on both sides of Pm12, the materials generated provide opportunities for further reduction of alien chromatin by intercrossing selected individuals and using markers to select the required plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cho YG, Ishii T, Temnykh S et al (2000) Diversity of microsatellite derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Duan XY, Sheng BQ, Zhou YL et al (1998) Monitoring of the virulence population of Erysiphe graminis f.sp. tritici. Acta Phytophylactica Sin 25:31–36

    Google Scholar 

  • Dubcovsky J, Lukaszewski AJ, Echaide M et al (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38:1655–1660

    Article  CAS  Google Scholar 

  • Dvorak J (1977) Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum. Can J Genet Cytol 19:133–141

    Google Scholar 

  • Dvorak J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33:892–897

    Google Scholar 

  • Dvorak J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Article  PubMed  CAS  Google Scholar 

  • Eujayl I, Sorrells ME, Baum M et al (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104:399–407

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Edwards KJ et al (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S et al (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics 270:315–323

    Article  CAS  Google Scholar 

  • Guyomarc′h H, Sourdille P, Charmet G et al (2002) Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  CAS  Google Scholar 

  • Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133:367–370

    Article  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ et al (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:401–414

    Google Scholar 

  • Huang XQ, Röder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  • Huang SX, Sirikhachornkit A, Su XJ et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Huang XQ, Wang LX, Xu MX et al (2003) Microsatellite mapping of the powdery mildew resistance gene Pm5e in common wheat (Triticum aestivum L.) Theor Appl Genet 106:858–865

    PubMed  CAS  Google Scholar 

  • Järve K, Peusha HO, Tsymbalova J et al (2000) Chromosomal location of a Triticum timopheevii-derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381

    Article  PubMed  Google Scholar 

  • Jia JZ, Devos KM, Chao S et al (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an ampliploid of Aegilops speltoides × Triticum monococcum. Genome 33:530–537

    CAS  Google Scholar 

  • Kimber G, Athwal RS (1972) A reassessment of the course of evolution of wheat. Proc Natl Acad Sci USA 69:912–915

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF et al (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • Lukaszewski AJ (2000) Manipulation of the 1RS.1BL translocation in wheat by induced homoeologous recombination. Crop Sci 40:216–225

    Article  CAS  Google Scholar 

  • McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z Pflanzenzuchtung 89:295–306

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Devos KM (2003) Catalogue of gene symbols for wheat. In: Pogna NE et al (eds) Proc 10th Int Wheat Genet Symp. Pasetum, Italy, vol 4. Istituto Sperimentale per la Cerealicoltura, Rome, Italy

    Google Scholar 

  • Miller TE, Reader SM, Ainsworth CC et al (1988) The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici, from Aegilops speltoides into wheat, Triticum aestivum. In: Jorna M, Shootmaker L (eds) Cereal breeding related to integrated cereal production: proceedings of the EUCARPIA conference. Pudoc, Wageningen, The Netherlands, pp 179–183

    Google Scholar 

  • Miranda LM, Murphy JP, Marshall D et al (2006) Pm34: a new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504

    Article  PubMed  CAS  Google Scholar 

  • Mohler V, Zeller FJ, Wenzel G et al (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Niewoehner AS, Leath S (1998) Virulence of Blumeria graminis f. sp. tritici on winter wheat in the eastern United States. Plant Dis 82:64–68

    Article  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Unrau J, Chapman V (1969) Evidence on the origin of the B genome of wheat. J Heredity 49:90–98

    Google Scholar 

  • Röder MS, Korzun V, Gill BS et al (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K et al (1998b) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA et al (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal locations and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sarkar P, Stebbins GL (1956) Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43:297–304

    Article  Google Scholar 

  • Scott KD, Eggler P, Seaton G et al (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T et al (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.) Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Stephenson P, Bryan G, Kirby J et al (1998) Fifty new microsatellite loci for the wheat genetic map. Theor Appl Genet 97:946–949

    Article  CAS  Google Scholar 

  • Yu JK, Dake TM., Singh S et al (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818

    Article  PubMed  CAS  Google Scholar 

  • Zhu ZD, Zhou RH, Kong XY et al (2005) Microsatellite markers linked to 2 powdery mildew resistance genes introgressed from Triticum carthlicum accession PS5 into common wheat. Genome 48:585–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. R. McIntosh for improving the manuscript. This work was financially supported by the National Fund for Distinguished Young Scholars (30425039), National Natural Science Foundation of China (30200174, 30571151), Fok Ying Tung Education Foundation (94021) and the State High Tech Programs (2006AA100102, 2006AA10Z1E9, 2006AA10Z1C4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qixin Sun or Zhiyong Liu.

Additional information

Wei Song and Hao Xie are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, W., Xie, H., Liu, Q. et al. Molecular identification of Pm12-carrying introgression lines in wheat using genomic and EST-SSR markers. Euphytica 158, 95–102 (2007). https://doi.org/10.1007/s10681-007-9432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9432-4

Keywords

Navigation