Advertisement

Euphytica

, Volume 158, Issue 3, pp 287–294 | Cite as

Genetic markers for doubled haploid response in barley

  • Xi-Wen Chen
  • Luís Cistué
  • María Muñoz-Amatriaín
  • Miguel Sanz
  • Ignacio Romagosa
  • Ana-María Castillo
  • María-Pilar Vallés
Article

Abstract

In order to analyse the genetic control of anther culture response in barley, a doubled-haploid (DH) population from the cross between a medium responsive cultivar ‘Dobla’ and the model cultivar ‘Igri’ was produced. A linkage map was constructed with 91 markers. A sub-population of 41 lines was characterised for different components of the anther culture response, and was used for quantitative trait loci (QTL) analysis. The vrs1 locus region on chromosome 2H, which determines inflorescence row type, was coincident with the largest putative QTL for number of embryos (nEMB) and albino plants. A region of chromosome 6H was associated with QTLs for nEMB and green plants. QTLs for number and percentage of green plants were located on the long arm of chromosome 5H. Therefore, new QTLs for main components of barley anther culture response were identified on chromosomes 2H, 5H and 6H, indicating that anther culture response in barley could be controlled by relative few genes of large effect. This work is a useful step towards the identification of new regions on the barley genome that could be associated with fundamental biological process implicated in the anther culture response.

Keywords

Anther culture Barley Doubled haploid (DH) Microspore embryogenesis QTLs 

Notes

Acknowledgements

X-W. Chen was recipient of a fellowship form the Ministerio de Educación y Cultura from the Spanish government. The research was supported by Projects PB97-1159, and AGL2001-1631 from Plan Comisión Interministerial de Ciencia y Tecnología of Spain.

References

  1. Beaumont VH, Rocheford TR, Widholm JM (1995) Mapping the anther culture response genes in maize (Zea mays L.). Genome 38:968–975PubMedGoogle Scholar
  2. Becker J, Heun M (1995) Barley microsatellites: allele variation and mapping. Plant Mol Biol 27:835–845PubMedCrossRefGoogle Scholar
  3. Blake TK, Kadyrzhanova CL, Shepherd KW, Islam AK, Langridge PL, McDonald CL, Erpelding J, Larson S, Blake NK, Talbert LE (1996) STS-PCR markers appropriate for wheat -barley introgression. Theor Appl Genet 93:826–832CrossRefGoogle Scholar
  4. Bregitzer P, Campbell RD (2001) Genetic markers associated with green and albino plant regeneration from embryogenic barley callus. Crop Sci 41:173–179CrossRefGoogle Scholar
  5. Castillo AM, Cistué L, Romagosa I, Vallés MP (2001a) Low responsiveness of six-rowed genotypes to androgenesis in barley does not have a pleiotropic basis. Genome 44:936–940CrossRefGoogle Scholar
  6. Castillo AM, Cistué L, Vallés MP, Sanz JM, Romagosa I, Molina-Cano JL (2001b) Efficient production of androgenic doubled haploid mutants in barley by the application of sodium azide to anther and microspore cultures. Plant Cell Rep 20:105–111CrossRefGoogle Scholar
  7. Castillo AM, Vallés MP, Cistué L (2001c) Improvements of barley androgenesis for plant breeding. In: Bohanec B (ed.) Biotechnological approaches for utilization of gametic cells. Office for Official Publications of the European Communities, Luxembourg, pp 15–21Google Scholar
  8. Cistué L, Ramos A, Castillo AM (1999) Influence of anther pretreatment and culture medium composition on the production of barley doubled haploids from model and low responding cultivars. Plant Cell Tiss Org Cult 55:159–166CrossRefGoogle Scholar
  9. Cistué L, Vallés MP, Echávarri B, Sanz JM, Castillo AM (2003) Barley anther culture. In: Malupszynski M, Kasha K, Foster B (eds) Doubled haploid production in crop plants. A Manual. FAO/IAEA Division, Wien, pp 29–35Google Scholar
  10. Cowen NM, Johnson CD, Armstrong K (1992) Mapping genes conditioning in vitro androgenesis in maize using RFLP analysis. Theor Appl Genet 84:720–724CrossRefGoogle Scholar
  11. Devaux P, Pickering R (2005) Haploids in the improvement of Poaceae. In: Palmer CE, Keller WA, Kasha KJ (eds) Haploids in crop improvement II. Biothechnology in Agriculture and Forestry 56. Springer, Berlin Heidelberg New York, pp 215–242CrossRefGoogle Scholar
  12. Foroughi-Wehr B, Friedt W, Wenzel G (1982) On the genetic improvement of androgenic haploid formation in Hordeum vulgare L. Theor Appl Genet 62:233–239Google Scholar
  13. Forster BP, Thomas WTB (2003) Doubled haploids in genetic mapping and genomics. In: Malupszynski M, Kasha K, Foster B (eds) Doubled haploid production in crop plants. A Manual. FAO/IAEA Division, Wien, pp 367–390Google Scholar
  14. Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88Google Scholar
  15. Grobe BA, Deimling S, Geiger HH (1996) Mapping of genes for anther culture ability in rye by molecular markers. Vortr Pflanzenzüchtg 35:282–283Google Scholar
  16. He P, Shen L, Lu C, Chen Y, Zhu L (1998) Analysis of quantitative trait loci which contribute to anther culturability in rice (Oryza sativa L). Mol Breed 4:165–172CrossRefGoogle Scholar
  17. Horvath H, Huang J, Wong OT, von Wettstein D (2002) Experiencies with genetic transformation of barley and characteristics of transgenic plants. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley science: recent advances from molecular biology to agronomy of yield and quality. Food Products Press, New York, pp 143–174Google Scholar
  18. Hou L, Ullrich SE, Kleinhofs A (1994) Inheritance of anther culture traits in Barley. Crop Sci 34:1243–1247CrossRefGoogle Scholar
  19. Jacquard C, Asakaviciute R, Hamalian AM, Sangwan RS, Devaux P, Clément C (2006) Barley anther culture: effects of annual cycle and spike position on microspore embryogenesis and albinism. Plant Cell Rep 25:375–381PubMedCrossRefGoogle Scholar
  20. Komatsuda T, Annaka T, Oka S (1993) Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theor Appl Genet 86:713–720CrossRefGoogle Scholar
  21. Kuenzel G, Korzum L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412Google Scholar
  22. Kwon YS, Kim KM, Eun MY, Sohn JK (2002) QTL mapping and associated marker selection for the efficacy of green plant regeneration in anther culture of rice. Plant Breed 121:10–16CrossRefGoogle Scholar
  23. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincon SE, Newburg L (1987) Mapmaker: an interactive computer pachkage for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174, 181PubMedCrossRefGoogle Scholar
  24. Larsen ET, Tuvesson IKD, Andersen SB (1991) Nuclear genes affecting percentage of green plants in barley (Hordeum vulgare L.) anther culture. Theor Appl Genet 82:417–420CrossRefGoogle Scholar
  25. Liu ZW, Biyashev RM, Saghai-Maroof MA (1996) Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet 93:869–876Google Scholar
  26. Magnard JL, Le Deunff E, Doménech J, Rogowsky PM, Testillano PS, Rougier M, Risueño MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize. Plant Mol Biol 44:559–574PubMedCrossRefGoogle Scholar
  27. Manninen OM (2000) Associations between anther-culture response and molecular markers on chromosome 2H, 3H and 4H of barley (Hordeum vulgare L.). Theor Appl Genet 100:57–62CrossRefGoogle Scholar
  28. Mano Y, Takahashi H, Sato K, Takeda K (1996) Mapping genes for callus growth and shoot regeneration in barley (Hordeum vulgare L.). Breed Sci 46:137–142Google Scholar
  29. Maraschin SF, Caspers M, Potokina E, Wülfert F, Graner A, Spaink HP, Wang M (2006) cDNA array analysis of stress-induced gene expression in barley androgenesis. Physiol Plant 127:535–550CrossRefGoogle Scholar
  30. Muñoz-Amatriaín M, Svensson JT, Castillo AM, Cistué L, Close TJ, Vallés MP (2006) Transcriptome analysis of barley anthers: effect of mannitol treatment on microspore embryogenesis. Physiol Plant 127:551–560CrossRefGoogle Scholar
  31. Murigneux A, Bentolila S, Hardy T, Baud S, Guitton C, Jullien H, Ben Tahar S, Freyssinet G, Beckert M (1994) Genotypic variation of quantitative trait loci controlling in vitro androgenesis in maize. Genome 37:970–976PubMedGoogle Scholar
  32. Powell W (1988) Diallel analysis of barley anther culture response. Genome 30:152–157CrossRefGoogle Scholar
  33. Ramsay L, Macaulay M, degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Powell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedGoogle Scholar
  34. Reynolds TL, Crawford RL (1996) Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum). Plant Mol Biol 32:823–829PubMedCrossRefGoogle Scholar
  35. SAS Institute (1989) SAS/STAT User’s guide, Version 6.03. SAS Institute, Cary, NC, USAGoogle Scholar
  36. Sayed-Tabatabaei BE, Komatsuda T, Takaiwa F, Graner A (1999) DNA sequencing and primer designing for RFLP clones evenly distributed in the barley genome. Barley Genet Newsl 28:15–18Google Scholar
  37. Szarejko I (2003) Doubled haploid mutation production. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants, a manual. Kluwer Academic Publishers, Dordrecht, pp 351–362Google Scholar
  38. Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Quant Trait Loci, http:/nalusda.gov:8000/otherdocs/jqtl/2Google Scholar
  39. Torp AM, Hansen AL, Anderson SB (2001) Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica 119:377–387CrossRefGoogle Scholar
  40. Torp AM, Bekesiova I, Holme IB, Hansen AL, Andersen SB (2004) Genetics related to doubled haploid induction in vitro. In: Mujib A (ed) In vitro applications in crop improvement. Science Publishers, Playmouth, pp 34–52Google Scholar
  41. Vergne P, Riccardi F, Beckert M, Dumas C (1993) Identification of a 32-kDa anther marker protein for androgenic response in maize, Zea mays L. Theor Appl Genet 86:843–850CrossRefGoogle Scholar
  42. Vrinten PL, Nakamura T, Kasha KJ (1999) Characterization of cDNAs expressed in the early stages of microspore embryogenesis in barley (Hordeum vulgare) L. Plant Mol Biol 41:455–463PubMedCrossRefGoogle Scholar
  43. Yamagishi M, Otani M, Higashi M, Fukuta Y, Fukui K, Yano M, Shimada T (1998) Chromosomal regions controlling anther culturability in rice (Oryza sativa L). Euphytica 103:227–234CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Xi-Wen Chen
    • 1
    • 3
  • Luís Cistué
    • 1
  • María Muñoz-Amatriaín
    • 1
  • Miguel Sanz
    • 1
  • Ignacio Romagosa
    • 2
  • Ana-María Castillo
    • 1
  • María-Pilar Vallés
    • 1
  1. 1.Departamento de Genética y Producción Vegetal, Estación Experimental de Aula DeiCSICZaragozaSpain
  2. 2.Area de Conreus ExtensiusCentre UdL-IRTALleidaSpain
  3. 3.Department of Biochemistry and Molecular BiologyNankai UniversityTianjinPeople’s Republic of China

Personalised recommendations