, 151:279 | Cite as

The origin of Darwin hybrid tulips analyzed by flow cytometry, karyotype analyses and genomic in situ hybridization

  • Agnieszka Marasek
  • Hitoshi Mizuochi
  • Keiichi Okazaki
Original Article


Chromosome morphology was studied in diploid cultivars of Tulipa fosteriana and T. gesneriana (2n = 2x = 24) and triploid Darwin hybrids (2n = 3x = 36) developed from interspecific crosses of T. gesneriana and T. fosteriana. Chromosomes were arranged in the karyotype according to decreasing total length. Based on our karyotypic analysis, we propose that median chromosomes may serve as markers for diploid genotypes. Discriminant analysis with respect to total chromosome length and short arm length showed a significant difference between the size of the larger median chromosomes of T. gesneriana and T. fosteriana Comparison of median chromosome length in Darwin hybrid tulips showed that two larger chromosomes and one smaller chromosome were derived from T. gesneriana and T. fosteriana, respectively. This finding was clearly and unambiguously confirmed by simultaneous hybridization of differentially labeled genomic probes of T. fosteriana and T. gesneriana to metaphase chromosomes of the triploid cultivar ‘Yellow Dover’, thereby enabling us to distinguish between the 24 chromosomes derived from T. gesneriana and 12 chromosomes derived from T. fosteriana. Thus, genomic in situ hybridization and median chromosome analyses can be useful to identify the genome constitution of triploid Darwin hybrid tulips. In addition, their hybridity was readily verified by flow cytometry using vegetative tissue of Darwin hybrid tulips. Our results clarify the process of Tulipa cultivar formation and will be useful for interspecific hybridization breeding.


Chromosome morphology Flow cytometry Genomic in situ hybridization Triploid Darwin hybrid tulips Tulipa 


  1. Anonymous (1968) Kruisingouderslijst tulpen. Koninklijke Algemeene Vereeniging voor Bloembollencultuur (KAVB). HaarlemGoogle Scholar
  2. Barba-Gonzales R, Lokker AC, Lim KB, Ramanna MS, Van Tyul JM (2004) Use of 2n gametes for the production of sexual polyploids from sterile Oriental × Asiatic hybrids of lilies (Lilium). Theor Appl Genet 109:1125–1132CrossRefGoogle Scholar
  3. Bryan JE (2002) Bulbs. Timber Press, Inc. USGoogle Scholar
  4. Chyi YS, Weeden NF (1984) Relative isozyme band intensities permit the identification of the 2n gamete parent of triploid apple cultivars. Hort Sci 19:818–819Google Scholar
  5. Doorenbos J (1954) Notes on the history of bulb breeding in the netherlands. Euphytica 3:1–11CrossRefGoogle Scholar
  6. Fernandez AM, Nakazaki T, Tanisaka T (1996) Development of diploid and triploid interspecific hybrids between Lilium longiflorum and L. concolor by ovary slice culture. Plant Breed 115:167–171CrossRefGoogle Scholar
  7. Filion WG (1974) Differential giemsa staining in plants. I. Banding patterns in three cultivars of Tulipa. Chromosoma 49:51–60CrossRefGoogle Scholar
  8. Fukui K, Shishido R, Kinoshita T (1997) Identification of the rice D-chromosomes by genomic in situ hybridization. Theor Appl Genet 95:1239–1245CrossRefGoogle Scholar
  9. Hair JF, Anderson RE Jr, Tatham RL, Grablowsky BJ (1984) Multivariate data analysis. Macmillan Publishing Co. USGoogle Scholar
  10. Hasterok R, Jenkins G, Longdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490CrossRefGoogle Scholar
  11. Hasterok R, Draper J, Jenkins G (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res 12:397–403PubMedCrossRefGoogle Scholar
  12. Hasterok R, Wolny E, Kulak S, Zdziechowicz A, Maluszynska J, Heneen WK (2005) Molecular cytogenetic analysis of Brassica rapa-Brassica oleracea var. alboglabra monosomic addition lines. Theor Appl Genet 111:196–205PubMedCrossRefGoogle Scholar
  13. Heimburger M (1962) Comparison of chromosome size in species of Anemone and their hybrids. Chromosoma 13:329–340CrossRefGoogle Scholar
  14. Kagan-Zur V, Mizrahi Y, Zamir D, Navot N (1991) A tomato triploid hybrid whose double genome parent is the male. J Amer Soc Hort Sci 116:342–345Google Scholar
  15. Karlov GI, Khrustaleva LI, Lim KB, Van Tuyl JM (1999) Homoeologous recombination in 2n-gametes producing interspecific hybrids of Lilium (Liliaceae) studied by genomic in situ hybridization (GISH). Genome 42:681–1999CrossRefGoogle Scholar
  16. Kato A (1997) An improved method for chromosome counting in maize. Biotech Histochem 72:249–252PubMedGoogle Scholar
  17. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559PubMedCrossRefGoogle Scholar
  18. Keller ERJ, Schubert I, Fuchs J, Meister A (1996) Interspecific crosses of onion with distant Allium species and characterization of the presumed hybrids by means of flow cytometry, karyotype analysis and genomic in situ hybridization. Theor Appl Genet 92:417–424CrossRefGoogle Scholar
  19. Kho YO, Baer J (1971) Incompatibility problems in species crosses of Tulips. Euphytica 20:30–35CrossRefGoogle Scholar
  20. Kisaka H, Kisaka M, Kanno A, Kameya T (1998) Intergeneric somatic hybridization of rice (Oriza sativa L.) and barley (Hordeum vulgarae L.) by protoplast fusion. Plant Cell Rep 17:362–367CrossRefGoogle Scholar
  21. Kitamura S, Inoue M, Ohimido N, Fukui K (1997) Identification of parental chromosomes in the interspecific hybrids of Nicotiana rustica L. × N. tabacum L. and N. gossei Domin × N. tabacum L., using genomic in situ hybridization. Breed Sci 47:67–70Google Scholar
  22. Kroon GH, Van Eijk JP (1977) Polyploidy in tulips (Tulipa L.). The occurrence of diploid gametes. Euphytica 26:63–66CrossRefGoogle Scholar
  23. Kuipers AGJ, Van Os DPM, de Jong JH, Ramanna MS (1997) Molecular cytogenetics of Alstroemeria: identification of parental genomes in interspecific hybrids and characterization of repetitive DNA families in constitutive heterochromatin. Chromosome Res 5:31–39PubMedCrossRefGoogle Scholar
  24. Lefeber DW (1960) Raising and introducing new tulips. Daffodil and Tulip, Year Book, pp 16–24Google Scholar
  25. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position of chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  26. Li CB, Zhang DM, Ge S, Lu BR, Hong DY (2001) Identification of genome constitution of Oriza malampuzhaensis, O. minuta, and O. punctata by multicolour genomic in situ hybridization. Theor Appl Genet 103:204–211CrossRefGoogle Scholar
  27. Lim KB, Chung JD, Van Kronenburg BCE, Ramanna MS, de Jong JH, Van Tuyl JM (2000) Introgression of Lilium rubellum Baker chromosomes into L. longiflorum Thunb.: a genome painting study of the F1 hybrid, BC1 and BC2 progenies. Chromosome Res 8:119–125PubMedCrossRefGoogle Scholar
  28. Lim KB, Wennekes J, de Jong JH, Jacobsen E, Van Tyul JM (2001a) Karyotype analysis of Lilium rubellum and Lilium longiflorum by chromosome banding and fluorescence in situ hybridization. Genome 44:911–918CrossRefGoogle Scholar
  29. Lim KB, Ramanna MS, de Jong JH, Jacobsen E, Van Tyul JM (2001b) Intermediate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theor Appl Genet 103:119–130CrossRefGoogle Scholar
  30. Lim KB, Ramanna MS, Van Tyul JM (2003) Homoeologous recombination in interspecific hybrids of Lilium. Korean J Breed 35:8–12Google Scholar
  31. Maluszynska J, Hasterok R (2005) Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenet Genome Res 109:310–314PubMedCrossRefGoogle Scholar
  32. Marasek A, Hasterok R, Orlikowska T (2004a) The use of chromosomal markers linked with nucleoli organisers for F1 hybrid verification in Lilium. Acta Horticulturae 651:77–82Google Scholar
  33. Marasek A, Hasterok R, Wiejacha K, Orlikowska T (2004b) Determination by GISH and FISH of hybrid status in Lilium. Hereditas 140:1–7CrossRefGoogle Scholar
  34. Marasek A, Orlikowska T (2001) Distant lily hybrids identification based on chromosomal markers. Biotechnologia 3:243–248 (In Polish)Google Scholar
  35. Metwally EI, Haruon SA, El-Fadly GA (1996) Interspecific cross between Cucurbita pepo L. and Cucurbita martinenzii through in vitro embryo culture. Euphytica 90:1–7Google Scholar
  36. Murray MG, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acid Res 8:4321–4325PubMedGoogle Scholar
  37. Nakamura T, Kuwayama S, Tanaka S, Oomiya T, Saitou H, Nakano M (2005) Production of intergeneric hybrid plants between Sandersonia aurantiaca and Gloriosa rothschildiana via ovule culture (Colchicaceae). Euphytica 142:283–289CrossRefGoogle Scholar
  38. Nassar NMA, Vieira MA, Vieira C, Grattapaglia D (1998) A molecular and embryonic study of apomixis in cassava (Manihot esculenta Crantz). Euphytica 102:9–13CrossRefGoogle Scholar
  39. Noda S (1986) Cytogenetic behavior, chromosomal differentiations, and geographic distribution in Lilium lancifolium (Liliaceae). Plant Spec Biol 1:69–78CrossRefGoogle Scholar
  40. North C, Wills AB (1969) Interspecific hybrids of Lilium lankongense Franchet produced by embryo culture. Euphytica 18:430–434CrossRefGoogle Scholar
  41. Obata Y, Niimi Y, Nakano M, Okazaki K, Miyajima I (2000) Interspecific hybrids between Lilium nobillissimum and L. regale produced via ovules with placenta culture. Scientia Horticulturae 84:191–204CrossRefGoogle Scholar
  42. Okazaki K, Asano Y, Oosawa K (1994) Interspecific hybrids between Lilium ‘Oriental’ hybrid and L. ‘Asiatic’ hybrid produced by embryo culture with revised media. Breed Sci 44:59–64Google Scholar
  43. Okazaki K, Kurimoto K, Miyajima I, Enami A, Mizuochi H, Matsumoto Y, Ohya H (2005) Induction of 2n pollen in tulips by arresting the meiotic process with nitrous oxide gas. Euphytica 143:101–114CrossRefGoogle Scholar
  44. Ørgaard M, Jacobsen N, Heslop-Harrison JS (1995) The hybrid origin of two cultivars of Crocus (Iridaceae) analyzed by molecular cytogenetics including genomic southern and in situ Hybridization. Ann Bot 76:25–262CrossRefGoogle Scholar
  45. Ran Y, Murray BG, Hammett KRW (1999) Karyotype analysis of the genus Clivia by Giemsa and fluorochrome banding and in situ hybridization. Euphytica 106:139–147CrossRefGoogle Scholar
  46. Ran Y, Keith R, Hammett W, Murray BG (2001) Hybrid identification in Clivia (Amaryllidaceae) using chromosomes banding and genomic in situ hybridization. Ann Bot 87:457–462CrossRefGoogle Scholar
  47. Rustanius P, Griesbach RJ, Gross KC, Line M (1991) Chromosome analysis of Alstroemeria ligtu hybrids. HortScience 26:902–904Google Scholar
  48. Sandfacer J (1975) The occurrence of spontaneous triploids in different barley varieties. Hereditas 80:149–153CrossRefGoogle Scholar
  49. Sayama H, Moug T, Nishimura Y (1982) Cytological study in Tulipa gesneriana and T. fosteriana. Jpn J Breed 32:26–34Google Scholar
  50. Smyth DR, Kongsuwan K, Wisudharomn S (1989) A survey of C-band patterns in chromosomes of Lilium. Plant Syst Evol 163:53–69CrossRefGoogle Scholar
  51. Smyth DR (19990. Lilium chromosomes. The Lily Yearbook NALS 52:66–76Google Scholar
  52. Snowdon RJ, Köhler W, Friedt W, Köhler A (1997) Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95:1320–1324CrossRefGoogle Scholar
  53. Srebniak M, Rasmussen O, Maluszynska J (2002) Cytogenetic analysis of asymetric potato hybrid. J Appl Genet 43:19–31PubMedGoogle Scholar
  54. Trucco F, Jeschke MR, Rayburn AL, Tranel PJ (2005) Amaranthus hybridus can be pollinated frequently by A. tuberculatus under field conditions. Heredity 94:64–70PubMedCrossRefGoogle Scholar
  55. Van Raamsdonk LWD, De Vries T (1995) Species relationships and taxonomy in Tulipa subg. Tulipa (Liliaceae). Plant Syst Evol 195:13–44CrossRefGoogle Scholar
  56. Van Scheepen J (1996) Classified list and international register of tulip names. General Bulbgrowers’ Association, HollandGoogle Scholar
  57. Van Tuyl JM, Van Creij MGM (2005) Tulipa gesneriana and Tulipa hybrids. In: Flower Breeding and Genetics: Issues, Challenges and Opportunities for 21st Century, Chapter 23, Springer Verlag, pp 613–637Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Agnieszka Marasek
    • 1
    • 2
  • Hitoshi Mizuochi
    • 1
  • Keiichi Okazaki
    • 1
  1. 1.Faculty of Agriculture, Laboratory of Plant BreedingNiigata UniversityNiigataJapan
  2. 2.Department of Physiology and BiochemistryResearch Institute of Pomology and FloricultureSkierniewicePoland

Personalised recommendations