, Volume 151, Issue 3, pp 273–278 | Cite as

Molecular Mapping of a Pollen Killer Gene S29(t) in Oryza Glaberrima and Co-Linear Analysis with S22 in O. Glumaepatula

  • Fengyi Hu
  • Peng Xu
  • Xianneng Deng
  • Jiawu Zhou
  • Jing Li
  • Dayun Tao


Two species in genus Oryza, O. glaberrima and O. glumaepatula, are valuable and potential sources of useful genes of interest for rice improvement. However, the hybrid sterility between O. sativa and these two species is a main reproduction barrier when transferring the favorable traits/genes to mbox{O. sativa.} To overcome it, the nature of hybrid sterility should be understood further. The objective in the report is to map a new hybrid sterility gene as a Mendelian factor from O. glaberrima and analyze the co-linear of hybrid sterility S loci mbox{between} mbox{O. glaberrima} and mbox{O. glumaepatula} via comparative mapping approach. A BC2F2 population, derived from a single semi-sterility plant of BC2F1 of WAB56-104/ WAB450-11-1-2-P41-HB (WAB450-6) //WAB56-104///WAB56-104 was employed to map this pollen killer in O. glaberrima since WAB450-6 is a progeny of interspecific hybrid between O. sativa and O. glaberrima. A new pollen killer locus, S29(t) in O. glaberrima, was identified and mapped to interval between SSR marker RM7033 (1.1 cM) and RM7562 (1.3 cM) on rice chromosome 2. Comparative mapping indicated that S29(t) closely corresponded to S22 which is also a pollen killer gene in O. glumaepatula and is tightly linked with RFLP marker S910 on the short arm of rice chromosome 2. The good co-linear between S29(t) and S22 implied that there might exist common (orthologous) hybrid sterility loci controlled the reproduction barrier among AA genome species of genus Oryza, which will contribute significantly to our understanding of speciation and operation of hybrid sterility between O. sativa and its AA genome relatives.


Co-linear Hybrid sterility Pollen killer Oryza sativa O. glaberrima O. glumaepatula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Attere A, Fatokun C (1983) Reaction of Oryza glaberrima accessions to rice yellow mottle virus. Plant Dis 67:420–421Google Scholar
  2. Brondani C, Bronami RPV, Rangel PHN, Perreira ME (2001) Development and mapping of Oryza glumaepatula-derived microsatellite markers in the interspeicfic cross Oryza glumaepatula × O. sativa. Hereditas 134: 59–71Google Scholar
  3. Brown LR (1994) Facing food insecurity. In: Brown LR (Ed.), State of the World, World Watch Institute Report on Progress Toward a Sustainable Society. World Watch Institute, New York 10, pp. 177–197Google Scholar
  4. Buso GSC, Rangel PHN, Ferreira ME (1998) Analysis of genetic variability of South-American wild rice populations (Oryza glumaepatula) with isozymes and RAPD markers. Mol Ecol 7:107–117CrossRefGoogle Scholar
  5. Chu YE, Morishima H, Oka HI (1969) Reproductive barriers distributed in cultivated rice species and their wild relatives. Jap J Genet 44:207–223Google Scholar
  6. Dingkuhn M, Jones M, Johnson DE, Sow A (1998) Growth and yield potential of Oryza sativa and O. glaberrima upland rice cultivars and their interspecific progenies. Field Crops Res 57:57–69CrossRefGoogle Scholar
  7. Doi K, Yoshimura A, Iwata N (1998) RFLP mapping and QTL analysis of heading date and pollen sterility using backcross population between Oryza sativa L. and Oryza glaberrima Steud. Breeding Sci 48:395–399Google Scholar
  8. Doi K, Taguchi K, Yoshimura A (1999) RFLP mapping of S20 and S21 for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genetics Newsletter 16:65–68Google Scholar
  9. Edwards K, Jonestone C, Thomspon C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res 19: 1349Google Scholar
  10. Ghesquiere A, Sequier J, Second G, Lorieux M (1997) First steps towards a rational use of African rice, Oryza glaberrima, in rice breeding through a ‘contig line’ concept. Euphytica 96:31–39CrossRefGoogle Scholar
  11. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin SY, Antonio BA, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148:479–494PubMedGoogle Scholar
  12. Heuer S, Kouame MM (2003) Assessing hybrid sterility in Oryza glaberrima × O. sativa hybrid progenies by PCR marker analysis and crossing with wide compatibility varieties. Theor Apple Genet 107:902–909CrossRefGoogle Scholar
  13. Hu FY, Tao DY, Yang YQ, Xu P, Li J, Zhou JW (2002) Studies of vegetative heterosis of interspecific hybrids between Oryza sativa and O. galberrima. J Southwest Agricultural University 24(2):146–150Google Scholar
  14. Jones MP, Mande S, Aluko K (1997a) Diversity and potential of Oryza glaberrima Steud. in upland rice breeding. Breed Sci 47:396–398Google Scholar
  15. Jones MP, Dingkuhn M, Aluko GK, Senmon M (1997b) Interspecific Oryza sativa X O. glaberrima Steud. progenies in upland rice improvement. Euphytica 92:237–246CrossRefGoogle Scholar
  16. Khush GS (1989) Multiple disease and insect resistance for increase yield stability in rice. In: International Rice Research Institute (Ed.), Progress in rice research, International Rice Research Institute, Manila 1099, Phlippines pp 79–92Google Scholar
  17. Lander E, Green P (1987) Construction of multilocus genetic maps in Humans. Proc Natl Acad Sci USA 84:2363–2367PubMedCrossRefGoogle Scholar
  18. Li ZB (1980) A preliminary discussion about the classification of male sterile lines of rice in China. Acta Agron Sin 6(1):17–26Google Scholar
  19. Lorieux M, Ndjiondjop M, Ghesquiere A (2000) A first interspecific Oryza sativa x Oryza glaberrima microsatellite-based genetic linkage map. Theor Appl Genet 100: 593–601Google Scholar
  20. McCouch SR, Teytelman L, Xu Y, Lobos KB, Clare K, Walton M, Fu B, Maghirang R, Li Z, Xing Y, Zhang Q, Kono I, Yano M, Fiellstrom R, DeClerck G, Schneider D, Cartinhour S, Ware D, Stein L (2002) Development and Mapping of 2240 New SSR Markers for Rice (Oryza sativa L.). DNA Res 9:199–207PubMedCrossRefGoogle Scholar
  21. Morinaga T, Kuriyama H (1957) Cytogenetical studies on Oryza sativa IX L. The F1 hybrid of O. sativa L. and O. glaberrima Steud. Jap J Breeding 7(2):57–65Google Scholar
  22. Morishima H, Hinata K, Oka HI (1962) Comparison between two cultivated rice species, Oryza sativa L. and O. glaberrima Steud. Jap J Breeding 12(3):153–165Google Scholar
  23. Morishima H, Hinata K, Oka HI (1963) Comparison of modes of evolution of cultivated forms from two wild rice species, Oryza breviligulata and O. perennis. Evolution 17: 170–181CrossRefGoogle Scholar
  24. Ohmido N, Fukui K (1995) Cytological studies of African cultivated rice, Oryza glaberrima. Theor Appl Genet 91:212–217CrossRefGoogle Scholar
  25. Pental D, Barnes SR (1985) Interrelationship of cultivated rices Oryza sativa and O. glaberrima with wild O. perennis complex. Theor Appl Genet 70:185–191Google Scholar
  26. Reversat G, Destombes D (1995) Resistance to Heterodera sacchari in rice. Nematologica 41: 333–334Google Scholar
  27. Sano Y (1983) A new gene controlling sterility in F1 hybrids of two cultivated rice species. J Hered 74: 435–439Google Scholar
  28. Sano Y, Chu Y, Morishima H (1984) Neighbor effects between two occurring rice species, Oryza sativa and O. glaberrima. Appl Ecol 21:245–254CrossRefGoogle Scholar
  29. Sano Y (1986) Sterility barriers between Oryza sativa and O. glaberrima. In: International Rice Research Institute (eds) Rice genetics. International Rice Research Institute, Manila, Philippines, pp109–118Google Scholar
  30. Sano Y (1994) Pollen-killer in rice. Japan J Breed 44 (supl. 1):298Google Scholar
  31. Silue D, Notteghem J (1991) Resistance of 99 Oryza glaberrima varieties to blast. IRRN 16:13–14Google Scholar
  32. Sobrizal YM, Sanchez PL, Ikeda K, Yoshimura A (2000) Identification of a gene for male gamete abortion in backcross progeny of Oryza sativa and Oryza glumaepatula. Rice Genetics Newsletter 17:59–61Google Scholar
  33. Sobrizal YM, Matsuzaki Y, Yoshimura A (2001) Mapping of a gene for pollen semi-sterility on chromosome 8 of rice. Rice Genetics Newsletter 18:59–61Google Scholar
  34. Sobrizal YM, Matsuzaki Y, Yoshimura A (2002) Mapping of pollen semi-sterility gene, S28(t), on rice chromosome 4. Rice Genetics Newsletter 19:80–81Google Scholar
  35. Taguchi K, Doi K, Yoshimura A (1999) RFLP mapping of S19, a gene for F1 pollen semi-sterility found in backcross progeny of Oryza sativa and O. glaberrima. Rice Genetics Newsletter 16:70–71Google Scholar
  36. Tao DY, Hu FY, Yang G, Yang J, Hong T, Tao H (1997) Exploitation and utilization of interspecific hybrid vigor between Oryza sativa and O. glaberrima. In: Jones, MP, M Dingkuhn, Johnson DE Fagade SO (eds) Interspecific hybridization:Progress and Prospects. WARDA/ADRAO, Cote d'Ivoire, pp. 103–112Google Scholar
  37. Tao DY, Xu P, Hu FY, Yang Y, Li J, Zhou J, Jones MP (2002) Hybrid sterility in near-isogenic lines derived from interspecific hybrid between cultivated rice species Oryza sativa and O. glaberrima. Chinese J Rice Sci 16(2):106–110Google Scholar
  38. Tao DY, Xu P, Li J, Yang Y, Zhou J, Hu FY, Jones MP (2003) Studies on hybrid sterility inheritance and mapping of sterile genes among near-isogenic lines derived from interspecific hybrid between cultivated rice species Oryza sativ a L. and O. glaberrima Steud. Chineses J Rice Sci 17(1): 11–15Google Scholar
  39. Temnykh S, Park WD, Ayers N, Cartinhour S, Hauck N, Lopovich L, Cho YG, Ishii T, McCouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Apple Genet 100:697–712CrossRefGoogle Scholar
  40. Xu Y, Zhu L, Xiao J, Ning N, McCouch SR (1997) Chromosomal region associated with segregation distortion of molecular markers in F2, backcross, doubled haploid, and recombinant inbred population in rice (Oryza sativa L.). Mol Gen Genet 253:535–545PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Fengyi Hu
    • 1
  • Peng Xu
    • 1
  • Xianneng Deng
    • 1
  • Jiawu Zhou
    • 1
  • Jing Li
    • 1
  • Dayun Tao
    • 1
  1. 1.Food Crops Research InstituteYunnan Academy of Agriculture SciencesKunmingP. R. of China

Personalised recommendations