Skip to main content
Log in

Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum) L.

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Complementary genes for purple grain colour Pp1, Pp2, Pp3 (now designated Pp1, Pp3b, Pp3a, respectively) were mapped using crosses between purple-grained hexaploid wheats ‘Purple Feed’ – Pp1Pp1/Pp2Pp2 (Pp1Pp1/Pp3bPp3b), ‘Purple’ – Pp1Pp1/Pp3Pp3 (Pp1Pp1/Pp3aPp3a) with non-purple-grained cultivars ‘Novosibirskaya 67’ (‘N67’) and ‘Saratovskaya 29’ (‘S29’). The genes Pp2 (Pp3b) and Pp3 (Pp3a) were inherited as monofactorial dominant when purple-grained wheats were crossed to ‘N67’. Both were mapped in the centromeric region of the chromosome 2A. Therefore, they were suggested being different alleles at the same locus and designated Pp3a and Pp3b. In the crosses between purple-grained wheats and ‘S29’ a segregation ratio of 9 (purple) to 7 (non purple) was obtained suggesting a complementary interaction of two dominant genes, Pp1 and Pp3. To map Pp1 as a single gene, the influence of the other Pp gene was taken into consideration by determining the Pp3 genotype of the F2 plants. The gene was mapped on chromosome 7BL, about 24 cM distal to the centromere. The Pp1gene was shown to be non allelic to the Rc-1 (red coleoptile) and Pc (purple culm) genes, contrary to what was previously suggested. The colouration caused by the Pp genes has no effect on pre-harvest sprouting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aal, el-S.M.&P. Hucl, 2003. Composition and stability of anthocyanins in blue-grained wheat. Agric Food Chem 51: 2174–2180.

    Article  CAS  Google Scholar 

  • Arbuzova, V.S.&O.I. Maystrenko, 2000. Chromosomal location of genes for purple grain colour introgressed in common wheat. Cereal Res Comm 28: 235–237.

    Google Scholar 

  • Arbuzova, V.S., O.I. Maystrenko&O.M. Popova, 1998. Development of near-isogenic lines of the common wheat cultivar ‘Saratovskaya 29’. Cereal Res Comm 26: 39–46.

    Google Scholar 

  • Blanco, A., C. De Giovanni, B. Laddomada, A. Sciancalepore, R. Simeone, K.M. Devos&M.D. Gale, 1996. Quantitative trait loci influencing grain protein content in trtraploid Wheats. Plant Breed 115: 310–316.

    Article  Google Scholar 

  • Bolton, F.E., 1968. Inheritance of blue aleurone and purple pericarp in hexaploid wheat. Diss Abstracts 1968:19 order No 68-13089: p. 844B Abstract Plant Breeding Abstracts 40 (1970) No 2684.

  • Börner, A., M.S. Röder, O. Unger&A. Meinel, 2000. The detection and molecular mapping of a major gene for non-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet 100: 1095–1099.

    Article  Google Scholar 

  • Castro, A.M., A. Vasicek, M. Manifiesto, D.O. Gimenez, M.S. Tacaliti, O. Dobrovolskaya, M.S. Röder, J.W. Snape&A. Börner, 2005. Mapping antixenosis genes on chromosome 6A of wheat to green bug and to a new biotype of Russian wheat aphid. Plant Breed 124: 229–233.

    Article  CAS  Google Scholar 

  • Clark, J.A., 1936. Improvement of wheat. US Dept. Agric. Yearbook 1936: 207–302.

  • Copp, L.G.L., 1965. Purple graines in hexaploid wheat. Wheat Inform Service No19–20: 18.

  • Finch, R.A.&E. Simpson, 1978. New colours and complementary colour genes in barley. Z. Pflanzenzücht. 81: 40–53.

    Google Scholar 

  • Flintham, J.E., R. Adlam&M. Gale, 1999. Seed coat and embryo dormancy in wheat. In: D. Weipert (Ed.), Proc. 8th Int. Symp. Preharvest Sprouting Cereals, pp. 67–76.

  • Franckowiak, J.D., 1997. Revised linkage maps for morphological markers in barley, Hordeum vulgare. Barley Genet. Newslett. 26: 9–21.

    Google Scholar 

  • Groos, C., G. Gay, M.-R. Perretant, L. Gervais, M. Bernard, F. Dedryver&G. Charmet, 2002. Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white×red grain bread-wheat cross. Theor Appl Genet 104: 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Haley, S.D., P.M. Niklas, J.R. Stanly, J. Birum&J.D. Kelly, 1993. Identification of RAPD markers closely linked to a major rust resistance gene block in common bean. Theor Appl Genet 86: 505–512.

    Article  CAS  Google Scholar 

  • Himi, E.&K. Noda, 2004. Isolation and location of the three homoeologous dihydroflavanol-4-reductase (DFR) genes of wheat and their tissue-dependent expression. Journal Exp Botany 55: 365–375.

    Article  CAS  Google Scholar 

  • Hossian, K.G., V. Kalavacharla, G.R. Lazo, J. Hegstad, M.J. Wentz etal., 2004. A chromosome bin map of 2148 expressed sequence tag loci of wheat homologous group 7. Genetics 168: 687–699.

    Article  Google Scholar 

  • Huang, X.Q., H. Cöster, M.W. Ganal&M.S. Röder, 2003. Advance backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106: 1379–1389.

    PubMed  CAS  Google Scholar 

  • Huang, X.Q., H. Kempf, M.W. Ganal&M.S. Röder, 2004. Advance backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor Appl Genet 109: 933–943.

    Article  PubMed  CAS  Google Scholar 

  • Jende-Strid, B., 1993. Genetic control of flavonoid biosynthesis in barley. Hereditas 119: 187–204.

    Article  CAS  Google Scholar 

  • Khlestkina, E.K., E.G. Pestsova, M.S. Röder&A. Börner, 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor Appl Genet 104: 632–637.

    Article  PubMed  CAS  Google Scholar 

  • Kosambi, D.D., 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172–175.

    Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincoln&L. Newburg, 1987. MAPMAKER: An interactive computer package for construction primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Lila, A.M., 2004. Anthocyanins and human health: An in vitro investigative approach. J Biomed Biotechnol. 2004: 306–313.

    Article  PubMed  Google Scholar 

  • Lundqvist, U.J., D. Franckowiak&T. Konishi, 1997. New and revised descriptions of barley genes. Barley Genet Newslett 26: 22–516.

    Google Scholar 

  • McIntosh, R.A., 1988. Catalogue of gene symbols for wheat. Proc. Linnean Soc. 92: 204–208.

    Google Scholar 

  • McIntosh, R.A.&E.P. Backer, 1967. Inheritance of purple pericarp in wheat. Proc. Linnean Soc. 92: 204–208.

    Google Scholar 

  • McIntosh, R.A., Y. Yamazaki, K.M. Devos, J. Dubcovsky, J. Rogers&R. Appels, 2003. Catalogue of Gene Symbols for Wheat http://www.grs.nig.ac.jp/wheat/komugi/genes/.

  • Nelson, J.C., M.E. Sorrells, A.E. Van Deynze, Y.H. Lu, M. Atkinson, M. Bernard, P. Leroy, J.D. Faris&J.A. Anderson, 1995. Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721– 731.

    PubMed  CAS  Google Scholar 

  • Piech, J.&L.E. Evans, 1979. Monosomic analysis of purple grain colour in hexaploid wheat. Z Pflanzenzuchtg 82: 212–217.

    Google Scholar 

  • Plaschke, J., M.W. Ganal&M.S. Röder, 1995. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91: 1001–1007.

    Article  CAS  Google Scholar 

  • Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.-H. Tixier, P. Leroy&M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Salina, E., A. Börner, I. Leonova, V. Korzun, L. Laikova, O. Maystrenko&M.S. Röder, 2000. Microsatellite mapping of the induced schaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet 100: 686–689.

    Article  CAS  Google Scholar 

  • Sharman, B.C., 1958. ‘Purple pericarp’: A monofactorial dominant in tetraploid wheats. Nature 181: 929.

    Article  Google Scholar 

  • Sourdille, P., S. Singh, T. Cadalen, G.L. Brown-Guedira, G. Gay, L. Qi, B.S. Gill, P. Dufour, A. Murigneux&M. Bernard, 2004. Microsatellite –based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Theor Appl Funct Integr Genomics 4: 12–25.

    Article  CAS  Google Scholar 

  • Vavilov, N.I., 1962. Selected works, USSR Academical Science Publisher, Moscow, Leningrad, Vol. 111, pp. 228–235 (in Russ).

    Google Scholar 

  • Watanabe, N., S.F. Koval&V.S. Koval, 2003. Wheat near-isogenic lines, Sankeisha, Nagoya, p. 34.

    Google Scholar 

  • Zang, X.Q., K. Ross&J.P. Gustafson, 2000. Physical location of homoeologous groups 5 and 6 molecular markers mapped in Triticum aestivum L. Jour Heredity 91: 441–445.

    Article  Google Scholar 

  • Zeven, A.C., 1991. Wheat with purple and blue grains; a review. Euphytica 56: 43–258.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Börner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrovolskaya, O., Arbuzova, V.S., Lohwasser, U. et al. Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum) L.. Euphytica 150, 355–364 (2006). https://doi.org/10.1007/s10681-006-9122-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9122-7

Key words

Navigation