Advertisement

Euphytica

, Volume 149, Issue 3, pp 353–366 | Cite as

Wheat transformation – an update of recent progress

  • Prem L. Bhalla
  • Harald H. Ottenhof
  • Mohan B. Singh
Article

Summary

Genetic transformation is vital to the transfer of novel genes into crop plants as well as to the emerging area of functional genomics. However, the successful genetic transformation of wheat still remains time consuming and genotype dependent. This paper updates the progress made in last 3 years towards developing a robust genetic transformation system for wheat. Agrobacterium-mediated wheat transformation offers advantages such as single-copy gene insertion, minimal rearrangement of DNA, low cost and comparatively high efficiency. The reported recent developments in wheat transformation will lead to increased efficiency of wheat breeding programs. The most promising recent progress is in the development of drought-tolerant wheat, since water stress continues to be a major limiting factor hindering world wheat productivity under adverse hot and dry weather conditions.

Key words

Triticum aestivum Agrobacterium plant transformation wheat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altpeter, F., V. Vasil, V. Srivastava, E. Stöger & I.K. Vasil, 1996. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep 16: 12–17.CrossRefGoogle Scholar
  2. Alvarez, M.L., S. Guelman, N. Halford, S. Lustig, M. Reggiard, N. Ryabushkina, P. Schewry, J. Stein & R. Vallejos, 2000. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100: 319–327.CrossRefGoogle Scholar
  3. Amoah, B.K., H. Wu, C. Sparks & H.D. Jones, 2001. Factors influencing Agrobacterium-mediated transient expression of uidA in wheat inflorescence tissue. J Expert Bot 52: 1135–1142.CrossRefGoogle Scholar
  4. Blechl, A.E. & O.D. Anderson, 1996. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotech 14: 875–879.CrossRefGoogle Scholar
  5. Bliffeld, M., J. Mundy, I. Potrykus & J. Futterer, 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor Appl Genet 98: 1079–1086.CrossRefGoogle Scholar
  6. Chen, W.P., X. Gu, G.H. Liang, S. Muthukrishnan, P.D. Chen, D.J. Liu & B.S. Gill, 1998. Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolist bombardment and the bar gene as a selectable marker. Theor Appl Genet 97: 1296–1306.CrossRefGoogle Scholar
  7. Cheng, M., J.E. Fry, S., Pang, H. Zhou, C. M. Hironaka, D. R. Duncan, T. W. Conner & Y. Wan, 1997. Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115: 971-980.PubMedGoogle Scholar
  8. Chong, K., S. Bao, T. Xu, K. Tan, T. Liang, J. Zeng, H. Huang, J. Xu & J. Xu, 1998. Functional analysis of the ver gene using transgenic wheat. Physiol Plant 102: 87–92.CrossRefGoogle Scholar
  9. Chugh, A. & P. Khurana, 2003. Regeneration via somatic embryogenesis from leaf basal segments and genetic transformation of bread and emmer wheat by particle bombardment. Plant Cell, Tissue and Org Cult 74: 151–161.CrossRefGoogle Scholar
  10. de Block, M., D., Debrouwer & T. Moens, 1997. The development of a nuclear male sterility system in wheat. Expression of the Barnase Gene Under the Control of Tapetum Specific Promoters. Theor Appl Genet 95: 125–131.CrossRefGoogle Scholar
  11. Ebinuma, H., K., Sugita, E. Matsunaga & M. Yamakado, 1997. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94: 2117–2121.PubMedCrossRefGoogle Scholar
  12. Erikson, O., M. Hertzberg & T. Nasholm, 2004. A conditional marker gene allowing both positive and negative selection in plants. Nat Biotech 22: 455–458.CrossRefGoogle Scholar
  13. Gopalalakrishna, S., P. Singh & N.K. Singh, 2003. Transient expression of foreign genes in mature wheat embryo explants following particle bombardment. Physiol Mol Biol Plants 9: 217–223.Google Scholar
  14. Haliloglu, K. & P.S. Baenziger, 2003a. Agrobacterium tumefaciens-mediated wheat transformation. Cereal Res Comm 31: 9–16.Google Scholar
  15. Haliloglu, K. & P.S. Baenziger, 2003b. Response of wheat genotypes to Agrobacterium tumefaciens-mediated transformation. Cereal Res Comm 31: 241–248.Google Scholar
  16. He, D.G., A. Mouradev, Y.M. Yang, E. Mouradeva & K.J. Scott, 1994. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep 14, 192–196.CrossRefGoogle Scholar
  17. Hohn, B., A.A. Levy & H. Puchta, 2001. Elimination of selectable markers from transgenic plants. Curr Opinion Biotech 12: 139–143.CrossRefGoogle Scholar
  18. Hu, T., S. Metz, C. Chay, H. P. Zhou, N. Biest, G. Chen, M. Cheng, X. Feng, M. Radionenko, F. Lu & J. Fry, 2003. Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21: 1010–1019.PubMedCrossRefGoogle Scholar
  19. Iser, M., S. Fettig, F. Scheyhing, K. Viertel & D. Hess, 1999. Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. J Plant Physiol 154: 509–516.Google Scholar
  20. Janakiraman, V., M. Steinau, S.B. McCoy & H.N. Trick, 2002. Recent advances in wheat transformation. In Vitro Cell Develop Biol – Plant 38: 404–414.CrossRefGoogle Scholar
  21. Kasuga, M., Q. Liu, S. Miura, K.Yamaguchi-Shinozaki & K. Shinozaki, 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17: 287–291.CrossRefGoogle Scholar
  22. Khanna, H.K. & G.E. Daggard, 2001. Enhanced shoot regeneration in nine Australian wheat cultivars by spermidine and water stress treatments. Aust J Plant Physiol 28: 1243–1247.Google Scholar
  23. Khanna, H.K. & G.E. Daggard, 2003. Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium. Plant Cell Rep 21: 429–436.PubMedGoogle Scholar
  24. Komari, T., Y. Hiei, Y. Saito, N. Murai & T. Kumashiro, 1996. Vectors carrying two sepatate T-DNAs for co-transformation of higher plants mediated by agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10: 165–174.PubMedCrossRefGoogle Scholar
  25. Lorz, H., B. Baker & J. Schell, 1985. Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen Genet 199: 178–192.CrossRefGoogle Scholar
  26. McCormac, A.C., H.X. Wu, M.Z. Bao, Y.B. Wang, R.J. Xu, M.C. Elliott & D. F. Chen, 1998. The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Euphytica 99: 17–25.CrossRefGoogle Scholar
  27. Mitic, N., R. Nikolic, S. Ninkovic, J. Miljus-Djukic & M. Neskovic, 2004. Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L. Biol Plant 48: 179–184.CrossRefGoogle Scholar
  28. Odell, J., P. Caimi, B. Sauer, S. Russell, 1990. Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223: 369–378.PubMedCrossRefGoogle Scholar
  29. Patnaik, D. & P. Khurana, 2001. Wheat Biotechnology: A minireview. Elec J Biotech 4: 74–102.Google Scholar
  30. Patnaik, D. & P. Khurana, 2003. Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biology 3:5 http://www.biomedcentral.com/1471–2229/3/5.
  31. Pellegrineschi, A., M. Reynolds, M. Pacheco, R.M. Brito, R. Almeraya, K. Yamaguchi-Shinozaki & D. Holsington, 2004. Stress-induced expression in wheat of the Arabidopsis thaliana DREB1A gene delays water stress symptoms under greenhouse conditions. Genome 47: 493–500.PubMedCrossRefGoogle Scholar
  32. Permingeat, H.R., M.L. Alvarez, G.D.L. Cervigni, R.A. Ravizzini & R.H. Vallejos, 2003. Stable wheat transformations obtained without selectable markers. Plant Mol Biol 52: 415–419.PubMedCrossRefGoogle Scholar
  33. Przetakiewicz, A., W. Orczyk & A. Nadolska-Orczyk, 2003. The effect of auxin on plant regeneration of wheat, barley and triticale. Plant Cell Tissue Org Cult 73: 245–256.CrossRefGoogle Scholar
  34. Puchta, H. 2003. Marker-free transgenic plants. Plant Cell Tissue Org Cult 74: 123–134.CrossRefGoogle Scholar
  35. Rasco-Gaunt, S., A. Riley, M. Cannell, P. Barcelo, P. A & Lazzeri, 2001. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J Exp Bot 52, 865–874.PubMedGoogle Scholar
  36. Sahrawat, A.K., D. Becker, S. Lutticke & H. Lorz, 2003. Genetic improvement of wheat via alien gene transfer, an assessment. Plant Sci 165: 1147–1168.CrossRefGoogle Scholar
  37. Sawahel, W.A., A.H. Hassan, 2002. Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotech Letters 24: 721–725.CrossRefGoogle Scholar
  38. Serik, O., I. Ainur, K. Murat, M. Tetsuo & I. Masaki, 1996. Silicon carbide fiber-mediated DNA delivery into cells of wheat (Triticum aestivum L.) mature embryos. Plant Cell Rep 16: 133–136.CrossRefGoogle Scholar
  39. Sivamani, E., A. Bahieldin, J. M. Wraith, T. Al-Niemi, W.E. Dyer, T.H.D. Ho & R. Qu, 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVAI gene. Plant Sci 155: 1–9.PubMedCrossRefGoogle Scholar
  40. Srivastava, V., O.D. Anderson & D.W. Ow, 1999. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Nat Acad Sci USA 96: 11117–11121.PubMedCrossRefGoogle Scholar
  41. Stoger, E., S. Williams, P. Christou, R.E. Down & J.A. Gatehouse, 1999. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin: GNA) in transgenic wheat plants: Effects on predation by the grain aphid Sitobon avenae. Mol Breeding 5: 65–73.CrossRefGoogle Scholar
  42. Varshney, A. & F. Altpeter, 2001. Stable transformation and tissue culture response in current European winter wheats (Triticum aestivum L.). Mol Breeding 8: 295–309.CrossRefGoogle Scholar
  43. Vasil, V., S.M. Brown, D. Re, M.E. Fromm & I.K. Vasil, 1991. Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Biotech 9: 743–747.CrossRefGoogle Scholar
  44. Vasil, V., A.M. Castillo, M.E. Fromm & I.K. Vasil, 1992. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Biotech 10: 667–674.CrossRefGoogle Scholar
  45. Vasil, I.K. & V. Vasil, 1999. Transformation of wheat via particle bombardment. Methods Mol Biol 111: 349–358.PubMedGoogle Scholar
  46. de Vetten, N., A.M. Wolters, K. Raemakers, I. van der Meer, R. ter Stege, E. Heeres, P. Heeres & R. Visser, 2003. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotech 21: 439–442.CrossRefGoogle Scholar
  47. Weeks, J.T., O.D. Anderson & A. E. Blechl, 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102: 1077–1084.PubMedGoogle Scholar
  48. Wenck A., C. Pugieux, M. Turner, M. Dunn, C. Stacy, A. Tiozzo, E. Dunder, E. Grinsven, R. Khan, M. Sigareva, W.C. Wang, J. Reed, P. Drayton, D. Oliver, H. Trafford, G. Legris, H. Rushton, S. Tayab, K. Launis, Y.-F. Chang, D.-F. Chen & L. Melchers, 2003. Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep 22: 244–251.PubMedCrossRefGoogle Scholar
  49. Wu, H., C. Sparks, B. Amoah & H.D. Jones, 2003. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Rep 21, 659–668.PubMedGoogle Scholar
  50. Zhao, X., I. Coats, P. Fu, B. Gordon-Kamm & L.A. Lyznik, 2003. T-DNA recombination and replication in maize cells. Plant J 33: 149–159.PubMedCrossRefGoogle Scholar
  51. Zhou, H., J.W. Arrowsmith et al., 1995. Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15, 159–163.Google Scholar
  52. Zhou, H., J.D. Berg, S.E. Blank, C. A. Chay, G. Chen, S.R. Eskelsen, J.E. Fry, S. Hoi, T. Hu, P.J. Isakson, M.B. Lawton, S.G. Metz, C.B. Rempel, D.K. Ryerson, A.P. Sansone, A.L. Shook, R.J. Starke, J.M. Tichota & S.A. Valenti, 2003. Field efficacy assessment of transgenic Roundup Ready wheat. Crop Sci 43, 1072–1075.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Prem L. Bhalla
    • 1
    • 2
  • Harald H. Ottenhof
    • 1
  • Mohan B. Singh
    • 1
  1. 1.Plant Molecular Biology and Biotechnology Laboratory, ARC Centre of Excellence for Integrative Legume Research, Faculty of Land and Food ResourcesThe University of MelbourneVictoriaAustralia
  2. 2.Faculty of Land and Food ResourcesThe University of MelbourneVic.Australia

Personalised recommendations