, Volume 147, Issue 1–2, pp 37–47 | Cite as

Proteomics: a promising approach to study biotic interaction in legumes. A review

  • J. V. Jorrín
  • D. Rubiales
  • E. Dumas-Gaudot
  • G. Recorbet
  • A. Maldonado
  • M. A. Castillejo
  • M. Curto


During the 1990s and early 2000s, the genomes of different organisms have been completely sequenced. Nowadays, biological research is directed to understand gene expression and function. Proteomics, understood as protein biochemistry on an unprecedented and high-throughput scale, is becoming a promising and active approach in this post-genomic period. However, its application to plants is still rather limited as compared to other biological systems. After having referred to the most recent plant proteomic reviews, we focused on legume proteomics including studies with the model species Medicago truncatula. This review is aimed at providing to non-proteomic specialists a global overview of what might be expected in entering this field.

Key Words

Aphanomyces euteiches broomrape legume proteomics Medicago truncatula Orobanche crenata Pisum sativum 



N-acyl homoserine lactone


two-dimensional electrophoresis


electrospray ionization


Expressed Sequence Tags


mass spectrometry


tandem mass spectrometry


matrix-assisted laser desorption/ionization-time of flight


multidimensional protein identification technology


Peptide Mass Fingerprinting


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebersold, R. & M. Mann, 2003. Mass spectrometry-based proteomics. Nat Biotechnol 422: 198–207.CrossRefGoogle Scholar
  2. AGI, 2000. Arabidopsis genome initiative. Nature 408: 796–815.Google Scholar
  3. Apweiler, R., A. Bairoch & C.H. Wu, 2004. Protein sequence databases. Curr Opin Chem Biol 8: 76–80.PubMedCrossRefGoogle Scholar
  4. Asirvatham, V.S., B.S. Watson & L.W. Sumner, 2002. Analytical and biological variances associated with proteomic studies of Medicago truncatula by two-dimensional polyacrylamide gel electrophoresis. Proteomics 2: 960–968.PubMedCrossRefGoogle Scholar
  5. Bell, C.J., R.A. Dixon, A.D. Farmer, R. Flores, J. Inman, R.A. Gonzales, M.J. Harrison, N.L. Paiva, A.D. Scott, J.W. Weller & G.D. May, 2001. The Medicago Genome Initiative: A model legume database. Nucl Acids Res 29: 114–117.PubMedCrossRefGoogle Scholar
  6. Bestel-Corre, G., E. Dumas-Gaudot, V. Poinsot, M. Dieu, J.F. Dierick, D. van Tuinen, J. Remacle, V. Gianinazzi-Pearson & S. Gianinazzi, 2002. Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two dimensional electrophoresis and mass spectrometry. Electrophoresis 23: 122–137.PubMedCrossRefGoogle Scholar
  7. Bestel-Corre, G., S. Gianinazzi & E. Dumas-Gaudot, 2004. Impact of sewage sludge on Medicago truncatula symbiotic proteome. Phytochemistry 65: 1651–1659.PubMedCrossRefGoogle Scholar
  8. Blondon, F., D. Marie, S. Brown & A. Kondorosi, 1994. Genome size and base composition in Medicago sativa and Medicago truncatula species. Genome 37: 264–270.Google Scholar
  9. Butt, Y.K.C., J.H.K. Lum & S.C.L. Lo, 2003. Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies. Planta 216: 762–771.PubMedGoogle Scholar
  10. Cabané, M., P. Calvet, P. Vincens & A.M. Boudet, 1993. Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the one of the heat shock (HSP70) family. Planta 190: 346–355.PubMedCrossRefGoogle Scholar
  11. Cánovas, F.M., E. Dumas-Gaudot, G. Recorbet, J. Jorrín, H.-P. Mock & M. Rossignol, 2004. Plant Proteome analysis. Proteomics 4: 285–298.PubMedCrossRefGoogle Scholar
  12. Castillejo, M.A., E. Dumas-Gaudot, D. Rubiales & J. Jorrín, 2004a. 2-DE analysis of the protein profile in healthy and broomrape (Orobanche crenata)-infected Medicago truncatula root tissue. 6th Siena Meeting (from Genome to Proteome). Abstract book, 156.Google Scholar
  13. Castillejo, M.A., N. Amiour, E. Dumas-Gaudot, D. Rubiales & J. Jorrin, 2004b. A proteomic approach to studying response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry 65: 1817–1828.CrossRefGoogle Scholar
  14. Chamrad, D.C., G. Körting, K. Stühler, H.E. Meyer, J. Klose & M. Blüggel, 2004. Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. Proteomics 4: 619–628.PubMedCrossRefGoogle Scholar
  15. Chevalier, F., V. Rofidal, P. Vanovz, A. Bergoin & M. Rossignol, 2004. Proteomic capacity of recent fluorescent dyes for protein staining. Phytochemistry 65: 1499–1506.PubMedCrossRefGoogle Scholar
  16. Coaker, G.L., B. Willard, M. Kinter, E.J. Stockinger & D. Francis, 2004. Proteomic analysis of resistance mediated by Rcm 2.0 and Rcm 5.1, two loci controlling resistance to bacterial canker of tomato. Mol Plant Microbe In 9: 1019–1028.Google Scholar
  17. Colditz, F., O. Nyamsuren, K. Niehaus, H. Eubel, H.-P. Braun & F. Krajinski, 2004. Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55: 109–120.PubMedCrossRefGoogle Scholar
  18. Cook, D.R., 1999. Medicago truncatula – A model in the making! Curr Opin Plant Biol 2: 301–304.PubMedCrossRefGoogle Scholar
  19. David, H., N. Slaymaker & T. Keen, 2004. Syringolide elicitor-induced oxidative burst and protein phosphorylation in soybean cells, and tentative identification of two affected phosphoproteins. Plant Sci 166: 387–396.CrossRefGoogle Scholar
  20. Dubery, H. & A. Grover, 2001. Current initiatives in proteomics research: The plant perspective. Curr Sci India 80: 262–269.Google Scholar
  21. Dumas-Gaudot, E., N. Amiour, S. Weidmann, G. Bestel-Corre, B. Valot, S. Lenogue, V. Gianninazzi-Pearson & S. Gianninazzi, 2004. A technical trick for studying proteomics in parallel to transcriptomics in symbiotic root-fungus interactions. Proteomics 4: 451–453.PubMedCrossRefGoogle Scholar
  22. Fecht-Christoffers, M.M., H.-P. Braun, C. Lemaitre-Guillier, A. VanDorsselaer & W.J. Horst, 2003. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol 133: 1935–1946.PubMedCrossRefGoogle Scholar
  23. Figeys, D., 2003. Novel approaches to map protein interactions. Curr Opin Biotechnol 14: 119–125.PubMedCrossRefGoogle Scholar
  24. Frugoli, J. & J. Harris, 2001. Medicago truncatula on the move. Plant Cell 13: 458–463.PubMedCrossRefGoogle Scholar
  25. Gallardo, K., C. Le Signor, J. Vandekerckhove, R.D. Thompson & J.Burstin, 2003. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 134: 1598–1613.Google Scholar
  26. Görg, A., C. Obermaier, G. Boguth, A. Harder, B. Scheibe, R. Wildgruber & W. Weiss, 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037–1053.PubMedCrossRefGoogle Scholar
  27. Gygi, S.P., G.L. Corthals, Y. Zhang, Y. Rochon & R. Aebersold, 2000. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97: 9390–9395.PubMedCrossRefGoogle Scholar
  28. Gygi, S.P., Y. Rochon, B.R. Franza & R. Aebershold, 1999a. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19: 1720–1730.Google Scholar
  29. Gygi, S.P., B. Rist, S.A. Gerber, F. Turecek, M.H. Gelb & R. Aebersold, 1999b. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17: 994–999.CrossRefGoogle Scholar
  30. Handberg, K. & J. Stougaard, 1992. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2: 487–496.CrossRefGoogle Scholar
  31. Heazlewood, J.L. & A.H. Millar, 2003. Integrated plant proteomics-putting the green genome to work. Funct Plant Biol 30: 471–482.CrossRefGoogle Scholar
  32. Hirano, H., N. Islam & H. Kawasaki, 2004. Technical aspects of functional proteomics in plants. Phytochemistry 65: 1487–1498.PubMedCrossRefGoogle Scholar
  33. Hoa le, T.P., M. Nomura, H. Kajiwara, D.A. Day & S. Tajima, 2004. Proteomic analysis on symbiotic differentiation of mitochondria in soybean nodules. Plant Cell Physiol 45: 300–308.PubMedCrossRefGoogle Scholar
  34. Holtorf, H., M.C. Guitton & R. Reski, 2002. Plant functional genomics. Naturwissenchaften 89: 235–249.CrossRefGoogle Scholar
  35. Ideker, T., V. Thorsson, J.A. Ranish, R. Christmas, J. Buhler, J.K. Eng, R. Bumgarner, D.R. Goodlett, R. Aebersold & L. Hood, 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934.PubMedCrossRefGoogle Scholar
  36. Imin, N., F. De Jong, U. Mathesius, G. van Noorden, N.A. Saeed, X.D. Wang, R.J. Rose & B.G. Rolfe, 2004. Proteome reference maps of Medicago truncatula embryogenic cell cultures generated from single protoplasts. Proteomics 7: 1883–1896CrossRefGoogle Scholar
  37. Jacobs, D.I., R. van der Heijden & R. Verpoorte, 2000. Proteomics in plant biotechnology and secondary metabolism. Phytochem Anal 11: 277–287.CrossRefGoogle Scholar
  38. Jansen, R.C. & J.P. Nap, 2002. Errors in genomics and proteomics. Nat Biotechnol 20: 19.PubMedCrossRefGoogle Scholar
  39. Jie, C., G.G. Harman, A. Comis, C. GenWu & L. Hainan, 2004. The change of maize plant proteome affected by Trichoderma harzianium and Pithium ultimum. Acta Phytopathol Sin 34: 319–328.Google Scholar
  40. Jones, A.M.E., V. Thomas, B. Truman, K. Lilley, J. Mansfield & M. Grant, 2004. Specific changes in the Arabidopsis proteome in response to bacterial challenge: differentiating basal and R-gene mediated resistance. Phytochemistry 65: 1805–1816.PubMedCrossRefGoogle Scholar
  41. Kazan, K., 2003. Alternative splicing and proteome diversity in plants: The tip of the iceberg has just emerged. Trends Plant Sci 8: 468–471.PubMedCrossRefGoogle Scholar
  42. Kersten, B., L. Bürkle, E.J. Kuhn, P. Giavalisco, Z. Konthur, A. Lueking, G. Walter, H. Eickhoff & U. Schneider, 2002. Large-scale plant proteomics. Plant Mol Biol 48: 133–141.PubMedCrossRefGoogle Scholar
  43. Kim, S.T., S. Yu, S.G. Kim, H.J. Kim, S.Y. Kang, D.U. Hwang, Y.S. Jang & K.Y. Kang, 2004. Proteome analysis of rice blast fungus (Magnaporthe grisea) proteome during appressorium formation. Proteomics 4: 3579–3587.PubMedCrossRefGoogle Scholar
  44. Koller, A., M.P. Washburn, B.M. Lange, N.L. Andon, C. Deciu, P.A. Haynes, L. Hays, D. Schieltz, W. Ulaszek, D. Wolters & J.R. Yates III, 2002. Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA: 11969–11974.Google Scholar
  45. Kvasnicka, F., 2003. Proteomics: General strategies and application to nutritionally relevant proteins. J Chromat B 787: 77–89.CrossRefGoogle Scholar
  46. Lamblin, A.F.J., J.A. Crow, J.E. Johnson, K.A.T. Silverstein, T.M. Kunau, A. Kilian, D. Benz, M. Stromvik, G. Endre, K.A. Van den Bosch, D.R. Cook, N.D. Young & E.F. Retzel, 2003. MtDB: a database for personalized data mining of the model legume Medicago truncatula transcriptome. Nucl Acids Res 31: 196–201.PubMedCrossRefGoogle Scholar
  47. Lander, E.S., L.M. Linton, B. Birren, C. Nusbaum, M.C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh, R. Funke, D. Gage, K. Harris, A. Heaford, J. Howland, L. Kann, J. Lehoczky, R. LeVine, P. McEwan, K. McKernan, J. Meldrim, J.P. Mesirov, C. Miranda, W. Morris, J. Naylor, C. Raymond, M. Rosetti, R. Santos, A. Sheridan, C. Sougnez, N. Stange-Thomann, N. Stojanovic, A. Subramanian, D. Wyman, J. Rogers, J. Sulston, R. Ainscough, S. Beck, D. Bentley, J. Burton, C. Clee, N. Carter, A. Coulson, R. Deadman, P. Deloukas, A. Dunham, I. Dunham, R. Durbin, L. French, D. Grafham, S. Gregory, T. Hubbard, S. Humphray, A. Hunt, M. Jones, C. Lloyd, A. McMurray, L. Matthews, S. Mercer, S. Milne, J.C. Mullikin, A. Mungall, R. Plumb, M. Ross, R. Shownkeen, S. Sims, R.H. Waterston, R.K. Wilson, L.W. Hillier, J.D. McPherson, M.A. Marra, E.R. Mardis, L.A. Fulton, A.T. Chinwalla, K.H. Pepin, W.R. Gish, S.L. Chissoe, M.C. Wendl, K.D. Delehaunty, T.L. Miner, A. Delehaunty, J.B. Kramer, L.L. Cook, R.S. Fulton, D.L. Johnson, P.J. Minx, S.W. Clifton, T. Hawkins, E. Branscomb, P. Predki, P. Richardson, S. Wenning, T. Slezak, N. Doggett, J.F. Cheng, A. Olsen, S. Lucas, C. Elkin, E. Uberbacher, M. Frazier, R.A. Gibbs, D.M. Muzny, S.E. Scherer, J.B. Bouck, E.J. Sodergren, K.C. Worley, C.M. Rives, J.H. Gorrell, M.L. Metzker, S.L. Naylor, R.S. Kucherlapati, D.L. Nelson, G.M. Weinstock, Y. Sakaki, A. Fujiyama, M. Hattori, T. Yada, A. Toyoda, T. Itoh, C. Kawagoe, H. Watanabe, Y. Totoki, T. Taylor, J. Weissenbach, R. Heilig, W. Saurin, F. Artiguenave, P. Brottier, T. Bruls, E. Pelletier, C. Robert, P. Wincker, D.R. Smith, L. Doucette-Stamm, M. Rubenfield, K. Weinstock, H.M. Lee, J. Dubois, A. Rosenthal, M. Platzer, G. Nyakatura, S. Taudien, A. Rump, H. Yang, J. Yu, J. Wang, G. Huang, J. Gu, L. Hood, L. Rowen, A. Madan, S. Qin, R.W. Davis, N.A. Federspiel, A.P. Abola, M.J. Proctor, R.M. Myers, J. Schmutz, M. Dickson, J. Grimwood, D.R. Cox, M.V. Olson, R. Kaul, C. Raymond, N. Shimizu, K. Kawasaki, S. Minoshima, E.G.A. Vans, M. Athanasiou, R. Schultz, B.A. Roe, F. Chen, H. Pan, J. Ramser, H. Lehrach, R. Reinhardt, W.R. McCombie, M. de la Bastide, N. Dedhia, H. Blocker, K. Hornischer, G. Nordsiek, R. Agarwala, L. Aravind, J.A. Bailey, A. Bateman, S. Batzoglou, E. Birney, P. Bork, D.G. Brown, C.B. Burge, L. Cerutti, H.C. Chen, D. Church, M. Clamp, R.R. Copley, T. Doerks, S.R. Eddy, E.E. Eichler, T.S. Furey, J. Galagan, J.G. Gilbert, C. Harmon, Y. Hayashizaki, D. Haussler, H. Hermjakob, K. Hokamp, W. Jang, L.S. Johnson, T.A. Jones, S. Kasif, A. Kaspryzk, S. Kennedy, W.J. Kent, P. Kitts, E.V. Koonin, I. Korf, D. Kulp, D. Lancet, T.M. Lowe, A. McLysaght, T. Mikkelsen, J.V. Moran, N. Mulder, V.J. Pollara, C.P. Ponting, G. Schuler, J. Schultz, G. Slater, A.F. Smit, E. Stupka, J. Szustakowski, D. Thierry-Mieg, J. Thierry-Mieg, L. Wagner, J. Wallis, R. Wheeler, A. Williams, Y.I. Wolf, K.H. Wolfe, S.P. Yang, R.F. Yeh, F. Collins, M.S. Guyer, J. Peterson, A. Felsenfeld, K.A. Wetterstrand, A. Patrinos, M.J. Morgan, P. de Jong, J.J. Catanese, K. Osoegawa, H. Shizuya, S. Choi & Y.J. Chen, 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.PubMedCrossRefGoogle Scholar
  48. Lecourieux-Ouaked, F., A. Pugin & A. Lebrun-Garcia, 2000. Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol Plant Microb In 8: 821–829.Google Scholar
  49. Liska, A.J. & A. Shevchenko, 2003. Expanding the organismal scope of proteomics: Cross-species protein identification by mass spectrometry and its implication. Proteomics 3: 19–28.PubMedCrossRefGoogle Scholar
  50. Mann, M. & O.N. Jensen, 2003. Proteomic analysis of post-translational modifications. Nat Biotechnol 21: 255–261.PubMedCrossRefGoogle Scholar
  51. Marte, B., 2003. Proteomics editorial. Nat Biotechnol 422: 191.CrossRefGoogle Scholar
  52. Martin, G.B., A.J. Bogdanove & G. Sessa, 2003. Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54: 23–61.PubMedCrossRefGoogle Scholar
  53. Maruyama, M., T. Fukuda, S. Saka, N. Inui, J. Coto, M. Miyagawa, M. Hayashi, M. Sawada, T. Moriyama & S. Utsumi, 2003. Molecular and structural analysis of electrophoretic variants of soybean seed storage proteins. Phytochemistry 64: 701–708.PubMedCrossRefGoogle Scholar
  54. Mathesius, U., N. Imin, S.H.A. Natera & B.G. Rolfe, 2003a. Proteomics as a functional genomics tool. In: Plant functional genomics. Methods Protocols 236: 395–414.Google Scholar
  55. Mathesius, U., S. Mulders, M.S. Gao, M. Teplitski, G. Caetano-Anolles, B.G. Rolfe & W.D. Bauer, 2003b. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100: 1444–1449.CrossRefGoogle Scholar
  56. Mathesius, U., N. Imin, H. Chen, M.A. Djordjevic, J.J. Weinman, S.H. Natera, A.C. Morris, T. Kerim, S. Paul, C. Menzel, G.F. Weiller & B.G. Rolfe, 2002. Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting. Proteomics 2: 1288–303.PubMedCrossRefGoogle Scholar
  57. Mathesius, U., G. Keijzers, S.H.A. Natera, J.J. Weinman, M.A. Djordjevic & B.G. Rolfe, 2001. Establishement of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1: 1424–1440.PubMedCrossRefGoogle Scholar
  58. McCallum, C., L. Comai, E.A. Greene & S. Henikoff, 2000. Targeted screening for induced mutations. Nat Biotechnol 18: 455–457.PubMedCrossRefGoogle Scholar
  59. Miura, K., 2003. Imaging technologies for the detection of multiple stains in proteomics. Proteomics 3: 1097–1108.PubMedCrossRefGoogle Scholar
  60. Morris, A.C. & M.A. Djordjevic, 2001. Proteome analysis of cultivar-specific interactions between Rhizobium leguminosarum biovar trifolii and subterranean clover cultivar Woogenellup. Electrophoresis 22: 586–598.PubMedCrossRefGoogle Scholar
  61. Morris, A.C., T. Kerim, S. Paul, C. Menzel, G.R. Weiller & B.G. Rolfe, 2002. Evaluation of proteome reference maps for cross-species identification of proteins by peptide mass fingerprinting. Proteomics 2: 1288–1303.PubMedCrossRefGoogle Scholar
  62. Mooney, B.P. & J.J. Thelen, 2004. High-throughput peptide mass fingerprinting of soybean seed proteins: Automated workflow and utility of UniGene expressed sequence tag databases. Phytochemistry 65: 1733–1744.PubMedCrossRefGoogle Scholar
  63. Natera, S.H.A., N. Guerreiro & N.A. Djordjevic, 2000. Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant. Microb In 13: 995–1009Google Scholar
  64. Newton, R.P., A.G. Brenton, C.J. Smith & E. Dudley, 2004. Plant proteome analysis by mass spectrometry: Principles, problems, pitfalls and recent developments. Phytochemistry 65: 1449–1485.PubMedCrossRefGoogle Scholar
  65. Panter, S., R. Thomson, G. de Bruxelles, D. Laver, B. Trevaskis & M. Udvardi, 2000. Identification with proteomics of novel proteins associated with the peribacteroid membrane of soybean root nodules. Mol Plant Microb In 13: 325–33.Google Scholar
  66. Park, O.K., 2004. Proteomic studies in plants. J Biochem Mol Biol 37: 133–138.PubMedGoogle Scholar
  67. Patterson, S.D. & R.H. Aebersold, 2003. Proteomics: the first decade and beyond. Nat Genet 33: 311–323.PubMedCrossRefGoogle Scholar
  68. Patton, W.F., 2002. Detection technologies in proteome analysis. J Chromatogr B 771: 3–31.Google Scholar
  69. Patton, W.F., B. Schulenberg & T.H. Steinberg, 2002. Two-dimensional gel electrophoresis; better than a poke in the ICAT. Curr Opin Biotech 13: 321–328.PubMedCrossRefGoogle Scholar
  70. Peck, S.C., 2003. Early phosphorylation events in biotic stress. Curr Opin Plant Biol 6: 334–338.PubMedCrossRefGoogle Scholar
  71. Peck, S.C., T.S. Nuhse, D. Hess, A. Iglesias, F. Meins & T. Boller, 2001. Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13: 1467–1475.PubMedCrossRefGoogle Scholar
  72. Penmetsa, R.V. & D.R. Cook, 2000. Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol 123: 1387–1398.PubMedCrossRefGoogle Scholar
  73. Phizicky, E., P.I.H. Bastiaens, H. Zhu, M. Snyder & S. Fields, 2003. Protein analysis on a proteomic scale. Nat Biotechnol 422: 208–215.CrossRefGoogle Scholar
  74. Porubleva, L. & P.R. Chitnis, 2000. Proteomics: a powerful tool in the post-genomic era. Ind J Biochem Biophys 37: 360–368.Google Scholar
  75. Rabilloud, T., 2002. Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but still climbs up the mountains. Proteomics 2: 3–10.PubMedCrossRefGoogle Scholar
  76. Rakwal, R. & G.K. Agrawal, 2003. Rice Proteomics: Current status and future perspectives. Electrophoresis 24, 3378–3389.PubMedCrossRefGoogle Scholar
  77. Ramonell, K.M. & S. Somerville, 2002. The genomics parade of defense responses: To infinity and beyond. Curr Opin Plant Biol 5: 291–294.PubMedCrossRefGoogle Scholar
  78. Repetto, O., G. Bestel-Corre, E. Dumas-Gaudot, G. Berta, V. Gianinazzi-Pearson & S. Gianinazzi, 2003. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157: 555–567.CrossRefGoogle Scholar
  79. Righetti, P.-G., A. Castagna, B. Herbert, F. Reymond & J.S. Rossier, 2003. Prefractionation techniques in proteome analyses. Proteomics 3: 1397–1407.PubMedCrossRefGoogle Scholar
  80. Rolfe, B.G., U. Mathesius, M. Djordjevic, J. Weinman, C. Hocart, G. Weiller & B. Dietz, 2003. Proteomic analysis of legume-microbe Interactions. Comput Funct Genome 4: 225–228.CrossRefGoogle Scholar
  81. Romeis, T., 2001. Protein kinases in the plant defence response. Curr Opin Plant Biol 4: 407–414.PubMedCrossRefGoogle Scholar
  82. Rose, J.K., S. Bashir, J.J. Giovannoni, M.M. Jahn & R.S. Saravanan, 2004. Tackling the plant proteome: Practical approaches, hurdles and experimental tools. Plant J 39: 715–33.PubMedCrossRefGoogle Scholar
  83. Rossignol, M., 2001. Analysis of the plant proteome. Curr Opin Biotechnol 12: 131–134.PubMedCrossRefGoogle Scholar
  84. Santoni, V., D. de Vienne & M. Zivy, 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis 17: 855–865.Google Scholar
  85. Saalbach, G., P. Erik & S. Wienkoop, 2002. Characterisation by proteomics of peribacteroid space and peribacteroid membrane preparations from pea (Pisum sativum) symbiosomes. Proteomics 2: 325–337.PubMedCrossRefGoogle Scholar
  86. Schiltz, S., K. Gallardo, M. Huart, L. Negroni, N. Sommerer & J. Burstin, 2004. Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135: 2241–2260.PubMedCrossRefGoogle Scholar
  87. Shaw, M.M. & B.M. Riederer, 2003. Sample preparation for two-dimensional gel electrophoresis. Proteomics 3: 1408–14017.PubMedCrossRefGoogle Scholar
  88. Steen, H. & M. Mann, 2004. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 5: 699–711.PubMedCrossRefGoogle Scholar
  89. Thiellement, H., M. Zivy & C. Plomion, 2002. Combining proteomic and genetic studies in plants. J Chromat B 782: 137–149.CrossRefGoogle Scholar
  90. Thiellement, H., N. Bahrman, C. Damerval, C. Plomion, M. Rossignol, V. Santoni, D. de Vienne, & M. Zivy, 1999. Proteomics for genetic and physiological studies in plants. Electrophoresis 17: 855–865.Google Scholar
  91. Van Wijk, K.J., 2001. Challenges and prospects of plant proteomics. Plant Physiol 126: 501–508.PubMedCrossRefGoogle Scholar
  92. Valot, B., S. Gianninazi & E. Dumas-Gaudot, 2004. Sub-cellular proteomic analysis of a Medicago truncatula root microsomal fraction. Phytochemistry 65: 1721–1732.PubMedCrossRefGoogle Scholar
  93. Venable, J.D., M.-Q. Dong, J. Wholschlegel, A. Dillin & J.R. Yates III, 2004. Automates approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods 1: 39–45.PubMedCrossRefGoogle Scholar
  94. Venter, J.C., M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O. Smith, M. Yandell, C.A. Evans, R.A. Holt, J.D. Gocayne, P. Amanatides, R.M. Ballew, D.H. Huson, J.R. Wortman, Q. Zhang, C.D. Kodira, X.H. Zheng, L. Chen, M. Skupski, G. Subramanian, P.D. Thomas, J. Zhang, G.L.G. Miklos, C. Nelson, S. Broder, A.G. Clark, J. Nadeau, V.A. McKusick, N. Zinder, A.J. Levine, R.J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V.D. Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A.E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T.J. Heiman, M.E. Higgins, R.-R. Ji, Z. Ke, K.A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G.V. Merkulov, N. Milshina, H.M. Moore, A.K. Naik, V.A. Narayan, B. Neelam, D. Nusskern, D.B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z.Y. Wang, A. Wang, X. Wang, J. Wang, M.-H. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S.C. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Center, M.L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez, Y.-H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N.N. Tint, S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J.F. Abril, R. Guigó, M.J. Campbell, K.V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y.-H. Chiang, M. Coyne, C. Dahlke, A.D. Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh & X. Zhu, 2001. The sequence of the human genome. Science 291: 1304–1351.PubMedCrossRefGoogle Scholar
  95. Washburn, M.P., R. Ulaszek, C. Deciu, D.M. Schieltz & J.R. Yates III, 2002. Analysis of quatitative proteomic data via multidimensional protein identification technology. Anal Chem 74: 1650–1657.PubMedCrossRefGoogle Scholar
  96. Washburn, M.P., D. Wolters & Jr. Yates III, 2001. Large scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotech 19: 242–247.CrossRefGoogle Scholar
  97. Watson, B.S., Z. Lei, R.A. Dixon & L.W. Sumner, 2004. Proteomics of Medicago sativa cell walls. Phytochemistry 65: 1709–1720.PubMedCrossRefGoogle Scholar
  98. Watson, B.S., V.S. Asirvatham, L. Wang & L.W. Summer, 2003. Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131: 1104–1123.PubMedCrossRefGoogle Scholar
  99. Whitelegge, J.P., 2002. Plant proteomics: BLASTing out of a MudPIT. Proc Natl Acad Sci USA 99: 11564–11566.PubMedCrossRefGoogle Scholar
  100. Winzer, T., A. Bairl, M. Linder, D. Linder, D. Werner & P. Muller, 1999. A novel 53 kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Bradyrhizobium japonicum. Mol Plant Microb In 12: 218–226.Google Scholar
  101. Xing, T., T. Ouellet & B.L. Miki, 2002. Towards genomic and proteomic studies of protein phosphorilation in plant–pathogen interactios. Trends Plant Sci 7: 224–230.PubMedCrossRefGoogle Scholar
  102. Yi-Ming, G., S. Shi-Hua, J. Yu-Xiang & K. Ting-Yung, 2002. Plant proteomics in the post-genomic era. Acta Bot Sin 44: 631–641.Google Scholar
  103. Yu, J., S. Hu, J. Wang, G.K. Wong, S. Li, B. Liu, Y. Deng, L. Dai, Y. Zhou, X. Zhang, M. Cao, J. Liu, J. Sun, J. Tang, Y. Chen, X. Huang, W. Lin, C. Ye, W. Tong, L. Cong, J. Geng, Y. Han, L. Li, W. Li, G. Hu, X. Huang, W. Li, J. Li, Z. Liu, L. Li, J. Liu, Q. Qi, J. Liu, L. Li, T. Li, X. Wang, H. Lu, T. Wu, M. Zhu, P. Ni, H. Han, W. Dong, X. Ren, X. Feng, P. Cui, X. Li, H. Wang, X. Xu, W. Zhai, Z. Xu, J. Zhang, S. He, J. Zhang, J. Xu, K. Zhang, X. Zheng, J. Dong, W. Zeng, L. Tao, J. Ye, J. Tan, X. Ren, X. Chen, J. He, D. Liu, W. Tian, C. Tian, H. Xia, Q. Bao, G. Li, H. Gao, T. Cao, J. Wang, W. Zhao, P. Li, W. Chen, X. Wang, Y. Zhang, J. Hu, J. Wang, S. Liu, J. Yang, G. Zhang, Y. Xiong, Z. Li, L. Mao, C. Zhou, Z. Zhu, R. Chen, B. Hao, W. Zheng, S. Chen, W. Guo, G. Li, S. Liu, M. Tao, J. Wang, L. Zhu, L. Yuan & H. Yang, 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296: 380–383.Google Scholar
  104. Zivy, M. & D. de Vienne, 2000. Proteomics: A link between genomics, genetics and physiology. Plant Mol Biol 44: 575–580.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • J. V. Jorrín
    • 1
    • 4
  • D. Rubiales
    • 2
  • E. Dumas-Gaudot
    • 3
  • G. Recorbet
    • 3
  • A. Maldonado
    • 1
  • M. A. Castillejo
    • 1
  • M. Curto
    • 1
    • 2
  1. 1.Agricultural and Plant Biochemistry Research Group, Department of Biochemistry and Molecular BiologyUniversity of CórdobaCórdobaSpain
  2. 2.Institute for Sustainable AgricultureCSICCórdobaSpain
  3. 3.UMR 1088 INRA/CNRS 5184/UB(Plante-Microbe-Environnement) INRA-CMSEDijon-CedexFrance
  4. 4.CórdobaSpain

Personalised recommendations