, Volume 148, Issue 3, pp 341–344 | Cite as

Spontaneous haploids in durum wheat: their cytogenetic characterization

  • Prem P. Jauhar


Durum or macaroni wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) arose as a natural hybrid between two wild species, Aegilops speltoides Tausch (2n = 2x = 14; BB genome) and Triticum urartu Tumanian (2n = 2x = 14; AA genome). The two progenitors hybridized in nature about half a million years ago and gave rise to tetraploid wheat, presumably in one step as a result of functioning of unreduced gametes in their hybrid BA (amphihaploid). It is easily possible to go back on the evolutionary scale and obtain durum haploids BA, and then regenerate tetraploid durum plants from them. Interestingly, such a reversion to haploidy does occur in nature as well, although at a very low frequency. This article reports on the occurrence of two spontaneous durum haploids and describes their chromosomal characteristics. The haploids (euhaploids, to be precise) had 14 somatic chromosomes, which, on fluorescent genomic in situ hybridization (fl-GISH), could be distinguished as 7 A-genome and 7 B-genome chromosomes. At meiosis, only 2.3 and 2.7% of the chromosomes paired in the two haploids, because of the presence of the homoeologous pairing-suppressor gene, Ph1. The Ph1-induced lack of pairing is a prerequisite for chromosome doubling through the formation of unreduced gametes that give rise to tetraploid durum wheats.

Key words

Chromosome pairing euhaploids fluorescent genomic in situ hybridization (fl-GISH) Ph1 Triticum turgidum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almouslem, A.B., P.P. Jauhar, T.S. Peterson, V.R. Bommineni & M.B. Rao, 1998. Haploid durum wheat production via hybridization with maize. Crop Sci 38: 1080–1087.CrossRefGoogle Scholar
  2. Coe, E.H., 1959. A line of maize with high haploid frequency. Am Nat 93: 381–382.CrossRefGoogle Scholar
  3. Dvořák, J., P. DiTerlizzi, H.-B. Zhang & P. Resta, 1993. The evolution of polyploid wheats: identification of the A genome donor species. Genome 36: 21–31.PubMedCrossRefGoogle Scholar
  4. Hagberg, A. & G. Hagberg, 1980. High frequency of spontaneous haploids in the progeny of an induced mutation in barley. Hereditas 93: 341–343.CrossRefGoogle Scholar
  5. Huang, S., A. Sirikhachornkit, X. Su, J. Faris, B. Gill, R. Haselkorn & P. Gornicki, 2002. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99: 8133–8138.PubMedCrossRefGoogle Scholar
  6. Jauhar, P.P., 2003a. Formation of 2n gametes in durum wheat haploids: Sexual polyploidization. Euphytica 133: 81–94.CrossRefGoogle Scholar
  7. Jauhar, P.P., 2003b. Haploid and doubled haploid production in durum wheat by wide hybridization. In: Manual on Haploid and Double Haploid Production in Crop Plants. M. Maluszynski, K.J. Kasha, B.P. Forster and I. Szarejko (Eds.). Kluwer Academic Publishers, Dordrecht, Netherlands. pp 161–167.Google Scholar
  8. Jauhar, P.P. & R.N. Chibbar, 1999. Chromosome-mediated and direct gene transfers in wheat. Genome 42: 570–583.CrossRefGoogle Scholar
  9. Jauhar, P.P. & L.R. Joppa, 1996. Chromosome pairing as a tool in genome analysis: Merits and limitations. pp. 9–37. In “Methods of Genome Analysis in Plants” (P.P. Jauhar, Ed.). CRC Press, Boca Raton, Florida, USA.Google Scholar
  10. Jauhar, P.P., O. Riera-Lizarazu, W.G. Dewey, B.S. Gill, C.F. Crane & J.H. Bennett, 1991. Chromosome pairing relationships among the A, B, and D genomes of bread wheat. Theor. Appl. Genet. 82: 441–449.CrossRefGoogle Scholar
  11. Jauhar, P.P., A.B. Almouslem, T.S. Peterson & L.R. Joppa, 1999. Inter- and intragenomic chromosome pairing relationships in synthetic haploids of durum wheat. J Hered 90: 437–445.CrossRefGoogle Scholar
  12. Jauhar, P.P., M. DoĞramacı-Altuntepe, T.S. Peterson & A.B. Almouslem, 2000. Seedset on synthetic haploids of durum wheat: Cytological and molecular investigations. Crop Sci 40: 1742–1749.CrossRefGoogle Scholar
  13. Joppa, L.R. & N.D. Williams, 1988. Langdon durum disomic substitution lines and aneuploid analysis in tetraploid wheat. Genome 30: 222–228.CrossRefGoogle Scholar
  14. Kermicle, J.L., 1969. Androgenesis conditioned by a mutation in maize. Science 166: 1422–1424.PubMedCrossRefGoogle Scholar
  15. Kihara, H., 1930. Genomanalyse bei Triticum und Aegilops. II. Cytologia 1: 263–284.Google Scholar
  16. Kimber, G., P.J. Sallee & L.S. Bates, 1978. A polyhaploid of Triticum turgidum. Cereal Res Commun 6: 149–155.Google Scholar
  17. Lacadena, J.R., & A. Ramos, 1968. Meiotic behaviour in a haploid plant of Triticum durum. Desf Genet Iber 20: 55–71.Google Scholar
  18. Magoon, M.L. & K.R. Khanna, 1963. Haploids. Caryologia 16: 191–235.Google Scholar
  19. Mochizuki, A. 1968. The monosomics of durum wheat. Proc. 3rd Int. Genet. Symp., pp. 310–315.Google Scholar
  20. Nishikawa, K., 1983. Species relationship of wheat and its putative ancestors as viewed from isozyme variation. Proceedings of the 6th International Wheat Genetics Symposium, Kyoto, Japan: pp 59–63.Google Scholar
  21. Riley, R., & V. Chapman, 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 182: 713–715.CrossRefGoogle Scholar
  22. Romero, C., & A.M. Sendino, 1982. Meiotic behaviour in haploids of Triticum durum. Cereal Res Commun 10: 191–196.Google Scholar
  23. Sarkar, P., & G.L. Stebbins, 1956. Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43: 297–304.CrossRefGoogle Scholar
  24. Sears, E.R., 1954. The aneuploids of common wheat. Missouri Agric Expt Stn Res Bull 572.Google Scholar
  25. Sears, E.R., & M. Okamoto, 1958. Intergenomic chromosome relationships in hexaploid wheat. Proc X Intern Cong Genet 2: 258–259.Google Scholar
  26. Wang, G.Z., N.T. Miyashita & K. Tsunewaki, 1997. Plasmon analyses of Triticum (wheat) and Aegilops: PCR single-strand conformational polymorphism (PRC-SSCP) analyses of organellar DNAs. Proc. Natl. Acad. Sci. USA 94: 14570–14577.PubMedCrossRefGoogle Scholar
  27. Weber, D.F., 1970. Doubly and triply monosomic Zea mays. Maize Genet Coop Newsl 44: 203.Google Scholar
  28. Weber, D.F., 1994. Use of maize monosomics for gene localization and dosage studies. The Maize Handbook (Freeling, M., and Walbot, V., Eds.). Springer-Verlag, New York, Inc., pp. 350–358.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  1. 1.United States Department of Agriculture – Agricultural Research ServiceNorthern Crop Science LaboratoryFargoU.S.A.

Personalised recommendations