Skip to main content
Log in

Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A partial amphiploid, TE-3, between Triticum aestivum cv. Chinese Spring (CS) and Thinopyrum intermedium ssp. trichophorum was characterized by cytological observation, genomic in situ hybridization (GISH), seed storage protein electrophoresis and disease resistance screening. The TE-3 plants were deeply covered with pubescence, which is characteristic of the Th. intermedium ssp. trichophorum parent. Feulgen staining of the somatic metaphases revealed that the chromosome number varied from 52 to 56. TE-3 pollen mother cells (PMCs) regularly showed two to four univalents and 25 to 27 bivalents, indicating a degree of cytological instability. Giemsa-C banding showed that the Thinopyrum chromosomes in TE-3 produced strong heterochromatin bands. GISH analysis suggested that the alien chromosomes in TE-3 consisted of eight St chromosomes, four Js chromosomes, and two J genome chromosomes, as well as two St-J translocation chromosomes. Seeds storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) showed that TE-3 expressed some of Th. intermedium ssp. trichophorum specific gliadin and glutenin bands. When inoculated with stripe rust and powdery mildew isolates, TE-3 expressed resistance derived from its Thinopyrum parent. It appears that TE-3 can be used as a donor source in wheat breeding programs to introduce novel variation for quality and disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizatulina, K.S., G.L. Yachevskaya & T.P. Pereladova, 1989. Study of the genome structure of Agropyron intermedium (Host) Beauv. Tsitologiya I Genetika 23: 15–22.

    Google Scholar 

  • Banks, P.M., P.J. Larkin, H.S. Bariana, E.S. Lagudah, R. Appels, P.M. Waterhouse, R.I.S. Brettell, X. Chen, H.J. Xu, Z.Y. Xin, Y.T. Qian, X.M. Zhou, Z.M. Cheng & G.H. Zhou, 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38: 395–405.

    PubMed  CAS  Google Scholar 

  • Cauderon Y., B. Saigne & M. Dauge, 1973. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: E.R. Sears & L.M.S. Sears (Eds.), Proc 4th International Wheat Genet Symposium, pp. 401–407. University of Missouri, Columbia, MO.

  • Chang, Z.J., Z.L. Ren, H. Zhan, Z.J. Yang, X.J. Zhang & X.R. Guo, 2003. Production of a new partial wheat – Thinopyrum intermedium amphiploid and its genome analysis using in situ hybridization. In: Proceedings of the Tenth International Wheat Genetics Symposium, pp. 557–560. Instituto Sperimentale Per La Cerealcultura, Paestum, Italy.

  • Chen, Q., R.L. Conner & A. Laroche, 1995. Identification of the parental chromosomes of the wheat – alien amphiploid Agrotona by genomic in situ hybridization. Genome 38: 1163-1169.

    PubMed  CAS  Google Scholar 

  • Chen, Q., R.L. Conner, A. Laroche & J.B. Thomas, 1998. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41: 580-586.

    Article  PubMed  CAS  Google Scholar 

  • Chen Q., R.L. Conner, H.J. Li, S.C. Sun, F. Ahmad, A. Laroche & R.J. Graf, 2003. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat – Thinopyrum intermedium partial amphiploids. Genome 46:135–145.

    Article  PubMed  Google Scholar 

  • Conner, R.L., E.D.P. Whelan & M.D. MacDonald, 1989. Identification of sources of resistance to common root rot in wheat – alien amphiploid and chromosome substitution lines. Crop Sci 29: 916–919.

    Article  Google Scholar 

  • Dewey, D.R., 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: J.P. Gustafson (Ed.) Gene Manipulation in Plant Improvement. Vol 16. pp. 209–279. Plenum Press, New York.

    Google Scholar 

  • Dvořák, J., 1985. Transfer of salt tolerance from Elytigia pontica (Podp.) Holub. to wheat by the addition of an incomplete Elytrigia genome. Crop Sci 21: 306–309.

    Google Scholar 

  • Fedak, G., Q. Chen, R.L. Conner, A. Laroche, A. Comeau & C.A. St-Pierre, 2001. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica 120: 373–378.

    Article  Google Scholar 

  • Friebe, B., Y. Mukai, B.S. Gill & Y. Cauderon, 1992. C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84: 899-905.

    Article  Google Scholar 

  • Gill, B.S., B. Friebe & T.R. Endo, 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830–839.

    Google Scholar 

  • Gupta, P. K. & G. Fedak, 1986. Intergeneric hybrids between X Triticosecale cv. Welsh (2n = 42) and three genotypes of Agropyron intermedium (2n = 42). Can J. Genet. Cytol 28: 176–179.

    Google Scholar 

  • Han F.P., B. Liu, G. Fedak & Z. Liu, 2004. Genomic constitution and variation in five partial amphiploids of wheat – Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor. Appl. Genet 109: 1070–1076.

    Article  PubMed  CAS  Google Scholar 

  • He, M.Y., Z.Y. Xu, M.Q. Zou, H. Zhang, Z.S. Piao & S. Hao, 1988. The establishment of two sets of alien addition lines of wheatgrass. Sci China Ser B 32: 695–705.

    Google Scholar 

  • Jiang, J., B. Friebe & B.S. Gill, 1994. Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.

    Article  Google Scholar 

  • Larkin, P.J., P.M. Banks, E.S. Lagudah, R. Apple, X. Chen, Z.Y. Xin, H.W. Ohm & R.A. McIntosh, 1995. Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38: 385–394.

    CAS  PubMed  Google Scholar 

  • Liu, S. B & H.G. Wang, 2002. Development and molecular cytogenetic identification of wheat-Thinopyrum intermedium addition lines for resistance to powdery mildew. Chinese Science Bulletin 47: 1500–1503.

    Google Scholar 

  • Ma, H., R.P. Singh & A. Mujeeb-Kazi, 1995. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83: 87–93.

    Article  Google Scholar 

  • Mukai, Y., B. Friebe, J.H. Hatchett, M. Yamamoto & B.S. Gill, 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102: 88–95.

    Article  Google Scholar 

  • Sun, S.C., 1981. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin 7: 51–58.

    Google Scholar 

  • Tang, S., Z. Li, X. Jia & P.J. Larkin, 2000. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant dervatives in wheat. Theor. Appl. Genet 100: 344–352.

    Article  CAS  Google Scholar 

  • Wan, Y. F., C. Yen, J.L. Yang & D.C. Liu, 1997. The diversity of resources resistant to scab in Triticeae (Poaceae). Wheat Information Service 84: 7–12.

    Google Scholar 

  • Wang, R.R.C., R. von Bothmer, J. Dvoák, G. Fedak, I. Linde- Laursen & M. Muramatsu, 1994. Genomic symbols in the Triticeae. In: Proceedings of the 2nd International Triticeae Symposium, pp. 29–34. Utah State University Press, Logan, UT.

  • Xu, J., R.L. Conner & A. Laroche, 1994. C-banding and fluorescence in situ hybridization studies of the wheat-alien hybrid “Agrotona”. Genome 37: 477–481.

    PubMed  CAS  Google Scholar 

  • Xu, J. & R.L. Conner, 1994. Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. trichophorum cv. Greenleaf. Genome 37: 305–310.

    PubMed  CAS  Google Scholar 

  • Yang, Z. J., D. C. Liu & G.R. Li. 2000. Development of new wheat – Thinopyrum germplasms for multi-resistance. J. Sichuan University (Natural Science Edition) 37(Suppl): 20–25.

    Google Scholar 

  • Yang, Z.J., G.R. Li, H.R. Jiang & Z.L. Ren, 2001. Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119: 317–321.

    Article  Google Scholar 

  • Zeller, F.J., U. Stephan & J. Lutz, 1993. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L.) . 1. Mlk and other alleles in Pm3 locus. Euphytica 68: 223–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zu-Jun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zu-Jun, Y., Guang-Rong, L., Zhi-Jian, C. et al. Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica 149, 11–17 (2006). https://doi.org/10.1007/s10681-005-9010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-9010-6

Keywords

Navigation