, Volume 149, Issue 1–2, pp 11–17 | Cite as

Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum

  • Yang Zu-Jun
  • Li Guang-Rong
  • Chang Zhi-Jian
  • Zhou Jian-Ping
  • Ren Zheng-Long


A partial amphiploid, TE-3, between Triticum aestivum cv. Chinese Spring (CS) and Thinopyrum intermedium ssp. trichophorum was characterized by cytological observation, genomic in situ hybridization (GISH), seed storage protein electrophoresis and disease resistance screening. The TE-3 plants were deeply covered with pubescence, which is characteristic of the Th. intermedium ssp. trichophorum parent. Feulgen staining of the somatic metaphases revealed that the chromosome number varied from 52 to 56. TE-3 pollen mother cells (PMCs) regularly showed two to four univalents and 25 to 27 bivalents, indicating a degree of cytological instability. Giemsa-C banding showed that the Thinopyrum chromosomes in TE-3 produced strong heterochromatin bands. GISH analysis suggested that the alien chromosomes in TE-3 consisted of eight St chromosomes, four Js chromosomes, and two J genome chromosomes, as well as two St-J translocation chromosomes. Seeds storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) showed that TE-3 expressed some of Th. intermedium ssp. trichophorum specific gliadin and glutenin bands. When inoculated with stripe rust and powdery mildew isolates, TE-3 expressed resistance derived from its Thinopyrum parent. It appears that TE-3 can be used as a donor source in wheat breeding programs to introduce novel variation for quality and disease resistance.


C-banding genomic in situ hybridization partial amphiploid Thinopyrum intermedium ssp. trichophorum wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizatulina, K.S., G.L. Yachevskaya & T.P. Pereladova, 1989. Study of the genome structure of Agropyron intermedium (Host) Beauv. Tsitologiya I Genetika 23: 15–22.Google Scholar
  2. Banks, P.M., P.J. Larkin, H.S. Bariana, E.S. Lagudah, R. Appels, P.M. Waterhouse, R.I.S. Brettell, X. Chen, H.J. Xu, Z.Y. Xin, Y.T. Qian, X.M. Zhou, Z.M. Cheng & G.H. Zhou, 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38: 395–405.PubMedGoogle Scholar
  3. Cauderon Y., B. Saigne & M. Dauge, 1973. The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: E.R. Sears & L.M.S. Sears (Eds.), Proc 4th International Wheat Genet Symposium, pp. 401–407. University of Missouri, Columbia, MO.Google Scholar
  4. Chang, Z.J., Z.L. Ren, H. Zhan, Z.J. Yang, X.J. Zhang & X.R. Guo, 2003. Production of a new partial wheat – Thinopyrum intermedium amphiploid and its genome analysis using in situ hybridization. In: Proceedings of the Tenth International Wheat Genetics Symposium, pp. 557–560. Instituto Sperimentale Per La Cerealcultura, Paestum, Italy.Google Scholar
  5. Chen, Q., R.L. Conner & A. Laroche, 1995. Identification of the parental chromosomes of the wheat – alien amphiploid Agrotona by genomic in situ hybridization. Genome 38: 1163-1169.PubMedGoogle Scholar
  6. Chen, Q., R.L. Conner, A. Laroche & J.B. Thomas, 1998. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41: 580-586.PubMedCrossRefGoogle Scholar
  7. Chen Q., R.L. Conner, H.J. Li, S.C. Sun, F. Ahmad, A. Laroche & R.J. Graf, 2003. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat – Thinopyrum intermedium partial amphiploids. Genome 46:135–145.PubMedCrossRefGoogle Scholar
  8. Conner, R.L., E.D.P. Whelan & M.D. MacDonald, 1989. Identification of sources of resistance to common root rot in wheat – alien amphiploid and chromosome substitution lines. Crop Sci 29: 916–919.CrossRefGoogle Scholar
  9. Dewey, D.R., 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: J.P. Gustafson (Ed.) Gene Manipulation in Plant Improvement. Vol 16. pp. 209–279. Plenum Press, New York.Google Scholar
  10. Dvořák, J., 1985. Transfer of salt tolerance from Elytigia pontica (Podp.) Holub. to wheat by the addition of an incomplete Elytrigia genome. Crop Sci 21: 306–309.Google Scholar
  11. Fedak, G., Q. Chen, R.L. Conner, A. Laroche, A. Comeau & C.A. St-Pierre, 2001. Characterization of wheat-Thinopyrum partial amphiploids for resistance to barley yellow dwarf virus. Euphytica 120: 373–378.CrossRefGoogle Scholar
  12. Friebe, B., Y. Mukai, B.S. Gill & Y. Cauderon, 1992. C-banding and in situ hybridization analyses of Agropyron intermedium, a partial wheat × Ag. intermedium amphiploid, and six derived chromosome addition lines. Theor Appl Genet 84: 899-905.CrossRefGoogle Scholar
  13. Gill, B.S., B. Friebe & T.R. Endo, 1991. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome 34: 830–839.Google Scholar
  14. Gupta, P. K. & G. Fedak, 1986. Intergeneric hybrids between X Triticosecale cv. Welsh (2n = 42) and three genotypes of Agropyron intermedium (2n = 42). Can J. Genet. Cytol 28: 176–179.Google Scholar
  15. Han F.P., B. Liu, G. Fedak & Z. Liu, 2004. Genomic constitution and variation in five partial amphiploids of wheat – Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor. Appl. Genet 109: 1070–1076.PubMedCrossRefGoogle Scholar
  16. He, M.Y., Z.Y. Xu, M.Q. Zou, H. Zhang, Z.S. Piao & S. Hao, 1988. The establishment of two sets of alien addition lines of wheatgrass. Sci China Ser B 32: 695–705.Google Scholar
  17. Jiang, J., B. Friebe & B.S. Gill, 1994. Recent advances in alien gene transfer in wheat. Euphytica 73: 199–212.CrossRefGoogle Scholar
  18. Larkin, P.J., P.M. Banks, E.S. Lagudah, R. Apple, X. Chen, Z.Y. Xin, H.W. Ohm & R.A. McIntosh, 1995. Disomic Thinopyrum intermedium addition lines in wheat with barley yellow dwarf virus resistance and with rust resistances. Genome 38: 385–394.PubMedGoogle Scholar
  19. Liu, S. B & H.G. Wang, 2002. Development and molecular cytogenetic identification of wheat-Thinopyrum intermedium addition lines for resistance to powdery mildew. Chinese Science Bulletin 47: 1500–1503.Google Scholar
  20. Ma, H., R.P. Singh & A. Mujeeb-Kazi, 1995. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83: 87–93.CrossRefGoogle Scholar
  21. Mukai, Y., B. Friebe, J.H. Hatchett, M. Yamamoto & B.S. Gill, 1993. Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102: 88–95.CrossRefGoogle Scholar
  22. Sun, S.C., 1981. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin 7: 51–58.Google Scholar
  23. Tang, S., Z. Li, X. Jia & P.J. Larkin, 2000. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant dervatives in wheat. Theor. Appl. Genet 100: 344–352.CrossRefGoogle Scholar
  24. Wan, Y. F., C. Yen, J.L. Yang & D.C. Liu, 1997. The diversity of resources resistant to scab in Triticeae (Poaceae). Wheat Information Service 84: 7–12.Google Scholar
  25. Wang, R.R.C., R. von Bothmer, J. Dvoák, G. Fedak, I. Linde- Laursen & M. Muramatsu, 1994. Genomic symbols in the Triticeae. In: Proceedings of the 2nd International Triticeae Symposium, pp. 29–34. Utah State University Press, Logan, UT.Google Scholar
  26. Xu, J., R.L. Conner & A. Laroche, 1994. C-banding and fluorescence in situ hybridization studies of the wheat-alien hybrid “Agrotona”. Genome 37: 477–481.PubMedGoogle Scholar
  27. Xu, J. & R.L. Conner, 1994. Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. trichophorum cv. Greenleaf. Genome 37: 305–310.PubMedGoogle Scholar
  28. Yang, Z. J., D. C. Liu & G.R. Li. 2000. Development of new wheat – Thinopyrum germplasms for multi-resistance. J. Sichuan University (Natural Science Edition) 37(Suppl): 20–25.Google Scholar
  29. Yang, Z.J., G.R. Li, H.R. Jiang & Z.L. Ren, 2001. Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119: 317–321.CrossRefGoogle Scholar
  30. Zeller, F.J., U. Stephan & J. Lutz, 1993. Chromosomal location of powdery mildew resistance genes in common wheat (Triticum aestivum L.) . 1. Mlk and other alleles in Pm3 locus. Euphytica 68: 223–229.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Yang Zu-Jun
    • 1
    • 2
  • Li Guang-Rong
    • 2
  • Chang Zhi-Jian
    • 3
  • Zhou Jian-Ping
    • 1
  • Ren Zheng-Long
    • 1
  1. 1.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Triticeae Research InstituteSichuan Agricultural UniversityDujiangyan CityChina
  3. 3.Crop Genetic Institute of Shanxi Academy of Agricultural SciencesTaiyuanChina

Personalised recommendations