, Volume 145, Issue 1–2, pp 11–23 | Cite as

Genetic mapping of a PRSV-P resistance gene in “highland papaya” based on inheritance of RAF markers



Papaya ringspot virus type P (PRSV-P) is a significant disease of Carica papaya. A major gene for PRSV-P resistance has been mapped in Vasconcellea cundinamarcensis, a distant relative of C. papaya. This was achieved by genetic mapping of the resistance phenotype and inherited, dominant, polymorphic randomly amplified DNA fingerprint (RAF) markers in F2 progenies of V. parviflora and V. cundinamarcensis. The parents of this cross confer resistance to several major diseases that affect C. papaya including PRSV-P in V. cundinamarcensis. Heredity of DNA markers and PRSV-P resistance was studied in the intrageneric population presented due to intergeneric fertility barriers between Carica and Vasconcellea. Genetic polymorphism between parents, based on RAF markers, was 75% with more than 70% of markers generated showing mendelian segregation for the expected ratios 1:3 or 1:1 (p < 0.05). Preferential inheritance of markers from either parent was not detected in the F2, indicating stable transfer of the genetic material. Discrete V. parviflora and V. cundinamarcensis linkage maps were compiled from 79 and 83 framework markers, delineating to 10 and 11 groups respectively. F1 and F2 progeny were screened for resistance to PRSV-P under controlled conditions. The resistant phenotype segregated 3:1 in the F2 and mapped to V. cundinamarcensis linkage group 7 with adjacent RAF markers within 4 cM. The framework maps of V. parviflora and V. cundinamarcensis presented cover 630.2 and 745.4 cM respectively, accounting for between 47–52 and 49–55 percent of the predicted genome lengths. These maps provide a platform for further genetic study of disease resistance characteristics identified in these species and the development of DNA markers tightly linked to these traits, which could be applied to the breeding of resistant C. papaya cultivars.


Carica papaya intraspecific hybrid linkage map marker PRSV-P RAF Vasconcellea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badillo, V., 1971. Monografia de la familia Caricaceae. Publicada por la Asociacion de Profesores, Univ Centr Venezuela, Maracay, Venezuela.Google Scholar
  2. Badillo, V., 2000. Carica L. Vs Vasconcellea St.-Hil. (Caricaceae) con la rehabilitacion de est ultimo. Ernista 10(2): 74–79.Google Scholar
  3. Badillo, V., V. van den Eynden & P. van Damme, 2000. Carica Palandensis (Caricaceae), a new species from Ecuador. Novon 10: 4–6.Google Scholar
  4. Barker, H., 1997. Extreme resistance to potato virus V in clones Solanum tuberosum that are also resistant to potato viruses Y and A: Evidence for a locus conferring broad-spectrum potyvirus resistance. Theor Appl Genet 95(8): 1258–1261.CrossRefGoogle Scholar
  5. Burnham, C., 1962. Discussions in Cytogenetics. Burgess, USA.Google Scholar
  6. Chakravarti, A., L. Lasher & J. Reefer, 1991. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128: 175–182.PubMedGoogle Scholar
  7. Chen, D., M. dela Vina, T. Inukai, D. Mackill, P. Ronald & R. Nelson, 1999. Molecular mapping of the Blast resistance gene, Pi44(t), in a line derived from a durably resistant rice cultivar. Theor Appl Genet 98: 1026–1053.Google Scholar
  8. Danin-poleg, Y., H. Paris, S. Cohen, H. Rabinowitch & Z. Karchi, 1997. Oligogenic inheritance of resistance to zucchini yellow mosaic virus in melons. Euphytica 93: 331–337.CrossRefGoogle Scholar
  9. Delaporta, S., J. Wood & J. Hicks, 1983. A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1: 19–21.Google Scholar
  10. Drew, R., P. Magdalita & C. O'Brien, 1998. Development of Carica interspecific hybrids. In: R. Drew (Ed.), Proceedings of the International Symposium on Tropical & Subtropical Fruits, Part 2, Acta Hortic, Netherlands, pp. 285–289.Google Scholar
  11. Fisher, M. & M. Kyle, 1994. Inheritance of resistance to potyviruses in ohaselous vulgaris L. III. Cosegregation of phenotypically similar dominant responses to nine potyviruses. Theor Appl Genet 89: 818–823.CrossRefGoogle Scholar
  12. Horovitz, S. & H. Jemines, 1967. Cruzamientos interspecificos e intergenericos en Caricaceas y sus implicaciones fitotecnicas. Agron Trop 17: 323–344.Google Scholar
  13. Hulbert, S., T. Ilott, E. Legg, S. Lincol, E. Lander & R. Michelmore, 1988. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120: 947–958.PubMedGoogle Scholar
  14. Hung, T., M. Wu & H. Su, 2000. A rapid method based on the one-step reverse transcriptase-polymerase chain reaction (RT-PCR) technique for detection of different strains of citrus tristeza virus. Phytopathology 148(7/8): 469–475.CrossRefGoogle Scholar
  15. Jobin-décor, M., G. Graham, R. Henery & R. Drew, 1997. RAPD and isozyme analysis of genetic relationships between Carica papaya and wild relatives. Genet Resour Crop Evol 44: 471–477.CrossRefGoogle Scholar
  16. Kazan, K., J. Manners & D. Cameron, 1993. Inheritance of randomly amplified polymorphic DNA markers in interspecific cross in the genus stylosanthes. Genome 36(1): 50–56.PubMedGoogle Scholar
  17. Kim, M., P. Moore, F. Zee, M. Fitch, D. Steiger, R. Manshardt, R. Paull, R. Drew, T. Sekioka & R. Ming, 2002. Genetic diversity of Carica papaya as revealed by AFLP markers. Genome 45: 503–512.CrossRefPubMedGoogle Scholar
  18. Knapp, S., J. Holloway & W. Bridges, 1995. Mapping dominant markers using F2 matings. Theor App Genet 91: 74–81.Google Scholar
  19. Guo, M., M. Mok & D. Mok, 1994. Analysis of preferential transmission in interspecific hybrids of phaseous vulgaris and p. coccineus. J Hered 85(3): 174–178.PubMedGoogle Scholar
  20. Lander, E., P. Green, J. Abrahamson, A. Barlow, M. Daly, S. Lincoln & L. Newburg, 1987. Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.CrossRefPubMedGoogle Scholar
  21. Lawrence, W., 1971. Plant Breeding, pp. 5–33. William Clowes and sons Ltd, London.Google Scholar
  22. Luo, S., H. Puchao, Z. Xuegin & Z. Peng, 2002. Inheritance of RAPD markers in an interspecific F1 hybrid of grape between of grape between Vitis quinquangularis and V. vinifera. Sci Hortic 93: 19–28.CrossRefGoogle Scholar
  23. Magdalita, P., D. Persley, I. Godwin & R. Drew, 1997. Screening Carica papaya × C. cauliflora hybrid for resistance to PRSV-P. Plant Pathol 46: 837–841.CrossRefGoogle Scholar
  24. Magdalita, P., I. Goodwin & R. Drew, 1998. Randomly amplified polymorphic DNA markers for Carica interspecific hybrid. In: R. Drew (Ed.), Proceedings of International Symposium on Tropical & Subtropical Fruits, Part 2. Acta Hortic, Netherlands, pp. 133–140.Google Scholar
  25. Manshardt, R. & T. Wenslaff, 1987. PRSV-P resistant Carica interspecific hybrids backcrossed to papaya. HortScience 22(5): 1136.Google Scholar
  26. Manshardt, R. & T. Wenslaff, 1989a. Zygotic polyembryony in interspecific hybrids of Carica papaya and C. cauliflora. J Am Soc Hortic Sci 114: 684–689.Google Scholar
  27. Manshardt, R. & T. Wenslaff, 1989b. Interspecific hybridization of papaya with other Carica species. J Am Soc Hortic Sci 114: 689–694.Google Scholar
  28. Manshardt, R., 1992. Papaya. In: F. Hammerschlag & R. Litz (Eds.), Biotechnology in Agriculture and No. 8 Biotechnology of Biennial Fruit Crops. Alden Press Ltd, Oxford.Google Scholar
  29. Manshardt, R. & R. Drew, 1998. Biotechnology of papaya. In: R. Drew (Ed.), Proceedings of International Symposium on Tropical & Subtropical Fruits. Acta Hortic, Netherlands, pp. 65–73.Google Scholar
  30. Mekako, H. H. Nakasone, 1975. Interspecific hybridisation among six Carica species. J Am Soc Hortic Sci 100: 237–242.Google Scholar
  31. Peace, C., V. Vithanage, C. Turnbull & B. Carrol, 2003. A genetic map of macadamia based on randomly amplified DNA fingerprinting (RAF) markers. Euphytica 134: 17–26.CrossRefGoogle Scholar
  32. Purseglove, J., 1982. Tropical Crops: Dicotyledons, pp. 45–51. Longman Group Ltd, Essex.Google Scholar
  33. Ramage, C., L. Sando, C. Peace, B. Carroll & R. Drew, 2003. Genetic diversity revealed in the apomictic fruit species Garcinia mangostana L. (mangosteen). Euphytica 136(1): 1–10.CrossRefGoogle Scholar
  34. Sawant, C., 1958. Crossing relationships in the genus carica. Evolution 12: 263–266.Google Scholar
  35. Shwarz-Sommers, Z., E. de Andrade Silva, R. Berndtgen, W. Lonnig, A. Muller, I. Nindl, K. Stuber, J. Wunder, H. Saedler, T. Gubitz, A. Borking, J. Gloz, E. Ritter & A. Hudson, 2003. A linkage map of an F2 Hybrid population of Antirrhinum majus and A. molle. Genetics 163: 669–710.Google Scholar
  36. Sondur, S., R. Manshardt & J. Stiles, 1996. A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor App Genet 93: 547–553.Google Scholar
  37. Storey, W., 1976. Papaya. In: N., Simmonds (Ed.), Evolution of Crop Plants, pp. 21–24. Longman, London.Google Scholar
  38. van Droogenbroeck, B., P. Breyne, P. Gotghebeur, E. Romeijn-Peeters, T. Kyndt & G. Gheysen, 2002. AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theor App Genet 105: 289–297.CrossRefGoogle Scholar
  39. van Droogenbroeck, B., T. Kyndt, I. Maertens, E. Romeijn-Peeters, X. Scheldeman, J. Romero-Motochi, P. van Damme, P. Goetghebeur & G. Gheysen, 2004. Phylogenetic analysis of the highland papayas (Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP. Theor App Genet 108: 1473–1486.CrossRefGoogle Scholar
  40. Waldron, J., C. Peace, I. Searle, A. Furtado, N. Wade, M. Graham & B. Carrol, 2002. Randomly amplified DNA fingerprinting: A culmination of DNA marker technologies based on arbitrarily-primed PCR amplification. J Biomed Biotechnol 2(3): 141– 150.CrossRefPubMedGoogle Scholar
  41. Yin, T., M. Huang, M. Wang, L. Zhu, Z. Zeng & R. Wu, 2001. Preliminary interspecific genetic maps of the populus genome constructed from RAPD markers. Genome 44: 602–609.CrossRefPubMedGoogle Scholar
  42. Zamir, D. & Y. Tadmore, 1986. Unequal segregation of nuclear genes in plants. Bot Gaz 147(3): 355–358.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of Biomolecular and Biomedical SciencesGriffith UniversityNathanAustralia
  2. 2.Primary Industries Research Victoria, Department of Primary Industries, Plant Biotechnology CentreLa Trobe UniversityBundooraAustralia

Personalised recommendations