, Volume 146, Issue 1–2, pp 87–94 | Cite as

Genetic variation of melon (C. melo) compared to an extinct landrace from the Middle Ages (Hungary) I. rDNA, SSR and SNP analysis of 47 cultivars

  • Z. Szabó
  • G. Gyulai
  • M. Humphreys
  • L. Horváth
  • A. Bittsánszky
  • R. Lágler
  • L. Heszky


Microsatellite profiles of 47 melon cultivars and landraces were analyzed and compared to the aDNA (ancient DNA) of seed remains from an extinct sample recovered from the 15th century (Budapest, Hungary). An aseptic incubation followed by ITS (internal transcribed spacer) analysis was used to exclude the exogenously and endogenously contaminated medieval seeds and to detect SNPs (single nucleotide polymorphism) in ITS1-5.8S-ITS2 region of rDNA (ribosomal DNA). SNPs were observed at the 94–95 bp (GC to either RC, RS or AG) of ITS1; and at 414 bp (A-to-T substitution), 470 bp (T to Y or C), 610 bp (A to R or G) and 633 bp (A-to-G transition) of ITS2. For comparative microsatellite analysis SSRs (simple sequence repeats) detected by ALF (automated laser fluorometer) was used. Eight of the 20 SSR primer pairs amplified 40 microsatellite alleles in identical fragment ranges. A total of 485 alleles were detected in the 47 melon cultivars. The number of alleles per marker ranged from 2 to 7 with an average of 5.7 including CMCT44 (2 alleles), CMAG59 (5 alleles), CMGA104 (5 alleles), CMCT134 (4 alleles), CMTA134 (6 alleles), CMCTT144 (7 alleles), CMTC168 (6 alleles) and CMCT170 (5 alleles). Sequence analysis of the microsatellite alleles showed different fragment lengths depending on changes in the number of unit of core sequences. Dendrogram produced by SPSS11 based on the presence versus absence of SSR alleles revealed that medieval melon had the closest genetic similarity to a registered melon cultivar Hógolyó selected from an old Hungarian melon landrace. These results also indicated that cloned DNA sequences recovered from aDNA of medieval melon can be of use for molecular breeding of modern melon cultivars via gene transfer.

Key words



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andres, T.C., 2004. Web site for the plant family Cucurbitaceae & home of the Cucurbit Network. family.html.Google Scholar
  2. Anderson, J.A., G.A. Churchill, J.E. Autrique, S.D. Tanksley & M.E. Sorrells, 1993. Optimizing parental selection for genetic linkage maps. Genome 36: 181–186.PubMedGoogle Scholar
  3. Buxó, R., 2002. Arqueologia de las plantas. Crítica Crijalbo Mondadori Barcelona.Google Scholar
  4. Dane, F. & T. Tsuchiya, 1976. Chromosome studies in the genus Cucumis. Euphytica 25: 367–374.CrossRefGoogle Scholar
  5. Danin-Poleg, Y., N. Reis, G. Tzuri & N. Katzir, 2001. Development and characterization of microsatellite markers in Cucumis. Theor Appl Genet 1002: 61–72.Google Scholar
  6. Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.Google Scholar
  7. Garcia-Mas, J., A.J. Monforte & P. Arús, 2004. Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite markers. Plant Syst Evol 248: 191–203.CrossRefGoogle Scholar
  8. Gyulai, G., Z. Mester, J. Kiss, L. Szemán, L. Heszky & A. Idnurm, 2003. Somaclone breeding of reed canarygrass (Phalaris arundinacea L). Grass Forage Sci 58: 210–215.Google Scholar
  9. Gyulai, G., Z. Szabó, M. Humphreys, R. Lágler, A. Bittsánszky, L. Horváth, J. Kiss & L. Heszky, 2005. Genetic variation of melon (C. melo) compared to an extinct landrace from the Middle Ages (Hungary) II. Morphological diversity of 47 cultivars and landraces. Euphytica (Submitted).Google Scholar
  10. Helm, M.A. & V. Helmleben, 1997. Characterization of new prominent satellite DNA of Cucumis metuliferus and differential distribution of satellite DNA in cultivated and wild species of Cucumis and related genera of Cucurbitaceae. Euphytica 94: 219–226.CrossRefGoogle Scholar
  11. Hsiao, C., N.J. Chatterton, K.H. Asay & K.B. Jensen, 1995. Phylogenetic relationships of the monogenomic species of the wheat tribe, Triticeae (Poaceae), inferred from nuclear rDNA (internal transcribed spacer) sequences. Genome 38: 211–223.PubMedGoogle Scholar
  12. Huang, X.Q., A. Börner, M.S. Röder & M.W. Ganal, 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105: 699–707.PubMedGoogle Scholar
  13. Jaccard, P., 1908. Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44: 223–270.Google Scholar
  14. Jacomet, S., D. Kucan, A. Ritter, G. Suter & A. Hagendorn, 2002. Punica granatum L. (pomegranates) from early Roman contexts in Vindonissa (Switzerland). Veget Hist Archaeobot 11: 79–92.CrossRefGoogle Scholar
  15. Jeffrey, D., 1990. Appendix: An outline classification of the Cucurbitaceae. In: D.M. Bates, R.W. Robinson, C. Jeffrey (Eds.)Biology and Utilization of the Cucurbitaceae. pp. 449–463, p. 485. Cornell University, Ithaca and London.Google Scholar
  16. Jobst, J., K. King & V. Hemleben, 1998. Molecular evolution of the Internal Transcribed Spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family Cucurbitaceae. Mol Phylogenet Evol 9: 204–219.PubMedGoogle Scholar
  17. Katzir, N., Y. Danin-Poleg, G. Tzuri, Z. Karchi, U. Lavi & P.B. Cregan, 1996. Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93: 1282–1290.Google Scholar
  18. Kavanagh, T.A. & J.N. Timmins, 1988. Structure of melon rDNA and nucleotide sequence of the 17–25S spacer region. Theor Appl Genet 76: 673–680.CrossRefGoogle Scholar
  19. Kirkbride, J.H., 1993. Biosystematic Monograph of the Genus Cucumis (Cucurbitaceae). Parkway Publishers, NC, U.S.A.Google Scholar
  20. Liu, L., F. Kakihara & M. Kato, 2004. Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 135: 305–313.Google Scholar
  21. López-Sesé, A.I., J.E. Staub, & M.L. Gómez-Guillamón, 2003. Genetic analysis of Spanish melon (Cucumis melo L.) germplasm using a standardized molecular-marker array and geographically diverse reference accessions. Theor Appl Genet 108: 41-52.PubMedGoogle Scholar
  22. Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked-segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88: 9828–9832.PubMedGoogle Scholar
  23. Morales, M., E. Roig, A.J. Monforte, P. Arús & J. Garcia-Mas, 2004. Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47: 352–360.PubMedCrossRefGoogle Scholar
  24. Monforte, A.J., M. Oliver, M.J. Gonzalo, J.M. Alvarez, R. Dolcet-Sanjuan & P. Arús, 2004. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108: 750–758.PubMedGoogle Scholar
  25. Munger, H.M. & R.W. Robinson, 1991. Nomenclature of Cucumis melo L. Cucurbit Genet Coop Reports 14: 43–44.Google Scholar
  26. Murray, M.G. & W.F. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321-4325.PubMedGoogle Scholar
  27. Naudin, C.V., 1859. Essais d'une monofraphie des especè et des varieties du genre Cucumis. Ann Sci Nat Bot Sér 4 11: 5–87.Google Scholar
  28. Nyékhelyi, B.D., 2003. Monumenta Historica Budapestinensia XII. Historical Museum of Budapest, Hungary, pp. 1–102.Google Scholar
  29. Oliver, J.L., J. Garcia-Mas, M. Cardús, N. Pueyo, A.I. López-Sesé, M. Arroyo, H. Gómez-Paniagua, P. Arús & C.M. de Vicente, 2001. Construction of a reference linkage map of melon. Genome 44: 836–845.CrossRefPubMedGoogle Scholar
  30. OMMI, 2004. National list of varieties. K. Neszmélyi (Ed.). National Institute for Agricultural Quality Control, Budapest, Hungary.Google Scholar
  31. Perl-Treves, R. & E. Galun, 1985. The Cucumis plastome: Physical map, intrageneric variation and phylogenetic relationships. Theor Appl Genet 71: 417–429.Google Scholar
  32. Périn, C., L.S. Hagen, V. De Conto, N. Katzir, Y. Danin-Poleg, V. Portnoy, S. Baudracco-Arnas, J. Chadoeuf, C. Dogimont & M. Pirat, 2002. A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104: 1017–1034.PubMedGoogle Scholar
  33. Pitrat, M., P. Hanelt & K. Hamer, 2000. Some comments on infraspecific classification of cultivars of melon. Acta Hort 510: 29–36.Google Scholar
  34. Ritschel, P.S., T.C. Lins, R.L. Tristan, G.S.C. Buso, J.A. Buso & M.E. Ferreira, 2004. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L). BMC Plant Biol 4: 9.CrossRefPubMedGoogle Scholar
  35. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  36. Sambrook, J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning. A Laboratory Manual 1–3. 2nd edn., Cold Spring Harbor Lab. Press, New York.Google Scholar
  37. Schlumbaum, A. & S. Jacomet, 1998. Coexistence of Tetraploid and Hexaploid Naked Wheat in a Neolithic Lake Dwelling of Central Europe. Evidence from Morphology and Ancient DNA. J Archaeol Sci 25: 1111–1118.Google Scholar
  38. Silberstein, L., I. Kovalski, R. Huang, K. Anagnostou, M.M.K. Jahn & R. Perl-Treves, 1999. Molecular variation in melon (Cucumis melo L.) as revealed by RFLP and RAPD markers. Sci Hort 79: 101–111.Google Scholar
  39. Staub, J.E., A.I. López-Sesé & N. Fanourakis, 2004. Diversity among melon landraces (Cucumis melo L.) from Greece and their genetic relationships with other melon germplasm of diverse origins. Euphytica 136: 151–166.CrossRefGoogle Scholar
  40. Stepansky, A., I. Kovalski & R. Perl-Treves, 1999. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217: 313-333.CrossRefGoogle Scholar
  41. Wang, Y.H., C.E. Thomas & R.A. Dean, 1997. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95: 791–798.Google Scholar
  42. Wilhelm, E., K. Hristoforoglu, S. Fluch & K. Burg, 2005. Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep 23: 790–795.CrossRefPubMedGoogle Scholar
  43. Zhuang, F.Y., J.F. Chen, J.E. Staub & C.T. Qian, 2004. Assessment of genetic relationships among Cucumis spp. by SSR and RAPD marker analysis. Plant Breed 123: 167–172.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Z. Szabó
    • 1
  • G. Gyulai
    • 1
  • M. Humphreys
    • 2
  • L. Horváth
    • 3
  • A. Bittsánszky
    • 1
  • R. Lágler
    • 1
  • L. Heszky
    • 1
  1. 1.Department of Genetics and Plant BreedingSt. Stephanus UniversityGödöllőHungary
  2. 2.IGERPlas GogerddanAberystwythU.K.
  3. 3.Institute of AgrobotanyTápiószeleHungary

Personalised recommendations