, Volume 144, Issue 1–2, pp 125–132 | Cite as

Molecular marker variability for southern root-knot nematode resistance in sweetpotato

  • Mwamburi Mcharo
  • Don R. LaBonte
  • Chris Clark
  • Mary Hoy
  • James H. Oard


Amplified fragment length polymorphism (AFLP) marker profiles for individuals in two F1 populations of sweetpotato [Ipomoea batatas (L.) Lam] were used in association studies to identify AFLP markers suitable for identification of plants possessing a resistant reaction to southern root-knot nematode race 3 [Meloidogyne incognita (Kofoid and White) Chitwood]. Population one consisted of 48 half-sib genotypes developed at the Louisiana State University (LSU) AgCenter. The second population consisted of 54 full-sibs developed by the East African and International Potato Center (CIP) sweetpotato breeding programs. Results for plant nematode resistance indicate a bimodal distribution among the genotypes for the LSU population and a normal distribution for the CIP population. Using analysis of molecular variance (AMOVA) at P < 0.001 and two multivariate analysis techniques i.e logistic regression and discriminant analysis, 5 and 4 AFLP markers that had a strong and significant association with respect to the resistance trait were selected for the LSU and CIP populations, respectively. A comparative analysis of the power of discriminant analysis models for southern root-knot nematode resistance class prediction achieved 88.78% (LSU) and 88.04% (CIP) classification efficiencies.

Key Words

discriminant analysis Ipomoea logistic regression Meloidogyne 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aluko, G.K., 2003. Genetic mapping of agronomic traits from the interspecific cross of Oryza sativa L. and Oryza glaberrima Steud. Ph.D. Dissertation (ETD-1110103–143019), Louisiana State University, Baton Rouge.Google Scholar
  2. Barker, K.R. & S.R. Koenning, 1998. Developing sustainable systems for nematode mangament. Annu Rev Phytopathol 36: 165–205.CrossRefPubMedGoogle Scholar
  3. Bent, A.F. & I.C. Yu, 1999. Applications of molecular biology to plant disease and insect resistance. Adv Agron 66: 251–298.Google Scholar
  4. Brodie, B.B., 1999. Classical and molecular approaches for managing nematodes affecting potato. Can J Plant Pathol 21: 222–230.Google Scholar
  5. Capdevielle, F.M., G.K. Aluko, M. Balzarini, & J.H. Oard, 2000. Application of molecular markers and discriminant analysis to identify rice lines with contrasting phenotypes for agronomic traits. In: G.S. Khush, D.S. Brar and B. Hardy (Eds.), Proceedings of the Fourth International Rice Genetics Symposium, International Rice Research Institute, 216 pp., Los Banos, Philippines (abstr.).Google Scholar
  6. Cervantes-Flores, J.C., G.C. Yencho & E.L. Davis, 2002. Host reactions of sweetpotato genotypes to root-knot nematodes and variation in virulence of Meloidogyne incognita populations. Hortscience 37: 1112–1116.Google Scholar
  7. Cruz-Castillo, J.G., S. Ganeshanandam, B.R. MacKay, G.S. Lawes, C.R.O. Lawoko & D.J. Woolley, 1994. Applications of canonical discriminant analysis in horticultural research. Hortscience 29: 1115–1119.Google Scholar
  8. Davide, R.G. & F.B. Struble, 1966. Selection from a field population for variability in Meloidogyne incognita on sweetpotato. Philipine Agriculturist 50: 15–29.Google Scholar
  9. Excoiffer, L., P.E. Smouse & J.M. Quattiro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131: 479–491.PubMedGoogle Scholar
  10. Fahima, T., M.S. Roder, K. Wendehake, V.M. Kirzhner & E. Nevo, 2002. Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theor Appl Genet 104: 17–29.CrossRefPubMedGoogle Scholar
  11. Fajardo, D.S. 2000. Genetic diversity in Papua New Guinea sweetpotato [Ipomoea batatas (L.) Poir] germplasm. M.Sc. Thesis, Louisiana State University, Baton Rouge.Google Scholar
  12. Giamalva, M.J., W.J. Martin & T.P. Hernandez, 1963. Sweetpotato varietal reaction to species and races of root-knot nematodes. Phytopathology 53: 1187–1189.Google Scholar
  13. Horejsi, T., J.E. Staub & C. Thomas, 2000. Linkage of random amplified polymorphic DNA markers to downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 115: 105–113.CrossRefGoogle Scholar
  14. new Hosmer, D.W. & S. Lemeshow, 1989. Applied logistic regression. John Wiley & Sons, Inc., New York.Google Scholar
  15. Jones, A. & P.D. Dukes, 1980. Heritabilities of sweetpotato resistances to root-knot caused by Meloidogyne incognita and M. javanica. J Am Soc Hort Sci 105: 154–156.Google Scholar
  16. Jones, A., P.D. Dukes, J.M. Schalk & M.G. Hamilton, 1991. I/13 and J/8 sweetpotato mass selection populations. Hortscience 26: 929–930.Google Scholar
  17. Jones, A., P.D. Dukes & J.M. Schalk, 1986. Sweetpotato breeding. In: M.J. Basset (Ed.), Breeding vegetable crops. AVI, pp. 1–35. Westport, Conn.Google Scholar
  18. Lawrence, G.W. 1984. The role of sweet potato resistance in the population dynamics and development of Meloidogyne incognita. Ph.D. Dissertation, Louisiana State University, Baton Rouge.Google Scholar
  19. Lawrence, G.W. & C.A. Clark, 1986. Identification, race determination, and pathogenicity of root-knot nematodes to resistant and susceptible sweetpotatoes. J Nematol 18: 617 (abstr.).Google Scholar
  20. Lawrence, G.W., C.A. Clark & V.L. Wright, 1986. Influence of Meloidogyne incognita on resistant and susceptible sweetpotato cultivars. J Nematol 18: 59–65.Google Scholar
  21. Mcharo, M., D.R. Labonte, J.H. Oard, S.J. Kays & W.J. McLaurin, 2004. Linking quantitative traits with AFLP markers in sweetpotatoes using discriminant analysis. Acta Hort 637: 285–293.Google Scholar
  22. Roberts, P.A. 1995. Conceptual and practical aspects of variability in root-knot nematodes related host-plant resistance. Ann Rev Phytopathol 33: 199–221.CrossRefGoogle Scholar
  23. SAS Institute Inc., 1999. SAS/STAT User's guide. SAS Institute Inc. Cary, North Carolina.Google Scholar
  24. SAS Institute Inc., 2001. The SAS system for windows v8. SAS Institute Inc. Cary, North Carolina.Google Scholar
  25. Struble, F.B., L.S. Morrison & H.B. Cordner, 1966. Inheritance of resistance to stem rot and root-knot nematode in sweetopotato. Phytopathology 56: 1217–1219.Google Scholar
  26. Thurston, L.M., K. Siggins, A.J. Mileham, P.F. Watson & W.V. Holt, 2002. Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation. Biol Reprod 66: 545–554.PubMedGoogle Scholar
  27. Ukoskit, K., P.G. Thompson, C.E. Watson Jr. & G.W. Lawrence, 1997. Identifying a randomly amplified polymorphic DNA (RAPD) marker linked to a gene for root-knot nematode resistance in sweetpotato. J Am Soc Hort Sci 122: 818–821.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Mwamburi Mcharo
    • 1
  • Don R. LaBonte
    • 1
  • Chris Clark
    • 2
  • Mary Hoy
    • 2
  • James H. Oard
    • 3
  1. 1.Department of HorticultureLouisiana State University Agricultural Center, Louisiana Agricultural Experiment StationBaton RougeU.S.A.
  2. 2.Department of Plant Pathology and Crop PhysiologyLouisiana State University. Agricultural Center, Louisiana Agricultural Experiment StationBaton RougeU.S.A.
  3. 3.Department of AgronomyLouisiana State University Agricultural Center, Louisiana Agricultural Experiment StationBaton RougeUSA

Personalised recommendations