, Volume 144, Issue 1–2, pp 11–22 | Cite as

Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods

  • Yongsheng Zhang
  • Xiaoyan Yin
  • Aifang Yang
  • Guosheng Li
  • Juren Zhang


The inheritance and stability of the acetolactate synthase (als) transgene were compared in transgenic maize plants, generated using the pollen-tube pathway, particle bombardment, or Agrobacterium-mediated methods of transformation. Progeny populations generated by successive selfing or backcrossing of primary transformants were analyzed over three generations, using PCR and herbicide screening, to examine segregation and als activity, respectively, and transgenic homozygous plants were selected. The pollen-tube method resulted in a higher rate of primary normal transgenic plants and a less-stable transmission of the als locus than did the other two methods. When transferred by the particle bombardment and Agrobacterium-mediated methods, the als gene was in a much higher proportion of Mendelian transmission than transferred by the pollen-tube method. Compared to the Agrobacterium-mediated transformation, the particle bombardment method tends to create multiple copies and insert sites of the als gene in maize genome, which delaying the homogenization of the als locus with advancing generations. Agrobacterium-mediated transformation resulted in a greater proportion of stable, low copy number (in general 1–2) transgenic events, facilitating the stable inheritance of the als gene, and producing multiple desirable transgenic plants.

Key Words

maize genetic transformation transgene stability comparison of transformation methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bohorova, N., W. Zhang, P. Julstrum, S. McLean, B. Luna, R.M. Brito, L. Diaz, M.E. Ramos, P. Estanol, M. Pacheco, M. Salgado & D. Hoisington, 1999. Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theor Appl Genet 99: 437–444.CrossRefGoogle Scholar
  2. Chong, K., S.L. Bao, T. Xu, K.H. Tan, T.B. Liang, J.Z. Zeng, H.L. Huang, J. Xu & Z.H. Xu, 1998. Functional analysis of the ver gene using antisense transgenic wheat. Physiol Plant 102: 87–92.CrossRefGoogle Scholar
  3. Duan, X., X. Li, Q. Xue, M. Abo-El-Saad, D. Xu & R. Wu, 1996. Transgenic rice plants harbouring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14: 494–498.CrossRefPubMedGoogle Scholar
  4. Frame, B., H. Shou, R. Chikwamba, Z. Zhang, C. Xiang, T. Fonger, S. Pegg, B. Li, D. Nettleton, D. Pei & K. Wang, 2002. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129: 13–22.CrossRefPubMedGoogle Scholar
  5. Fromm, M.E., F. Morrish, C. Armstrong, R. Williams, J. Thomas & T.M. Klein, 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8: 833–839.CrossRefPubMedGoogle Scholar
  6. Hu, C.Y. & L.Z. Wang, 1999. In planta soybean transformation technologies developed in China: Procedure, confirmation, and field performance. In Vitro Cell Dev Biol Plant 35: 417–420.Google Scholar
  7. Huang, G., Y. Dong & J. Sun, 1999. Introduction of exogenous DNA into cotton via pollen-tube pathway with GFP as a reporter. Chin Sci Bull 44: 698–701.Google Scholar
  8. Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari & T. Kumashiro, 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14: 745–750.CrossRefPubMedGoogle Scholar
  9. Komari, T., Y. Hiei, Y. Ishida, T. Kumashirot & T. Kubo, 1998. Advances in cereal gene transfer. Curr Opin Plant Biol 1: 161–165.CrossRefPubMedGoogle Scholar
  10. Li, S.R., J.R. Zhang & H.M. Chen, 1990. Study on induction of embryogenetic callus and plantlet regeneration in maize. J Shandong Univ 25: 116–124 (in Chinese).Google Scholar
  11. Li, G.S., A.F. Yang, J.R. Zhang, Y.P. Bi & L. Shan, 2001. Genetic transformation of calli from maize and regeneration of herbicide-resistant plantlets. Chin Sci Bull 46: 563–565.Google Scholar
  12. Luo, Z.X. & R. Wu, 1988. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 6: 165–174.Google Scholar
  13. Otha, Y., 1986. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA 83: 715–719.Google Scholar
  14. Peng, J., F. Wen, R.L. Lister & T.K. Hodges, 1995. Inheritance of gusA and neo genes in transgenic rice. Plant Mol Biol 27: 91–104.CrossRefPubMedGoogle Scholar
  15. Quan, R.D., M. Shang, H. Zhang, Y.X. Zhao & J.R. Zhang, 2004. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166: 141–149.CrossRefGoogle Scholar
  16. Register, J.C., D.J. Peterson, P.J. Bell, W.P. Bullock, E.J. Evans, B. Frame, A.J. Greenland, N.S. Higgs, I. Jepson, S. Jiao, C.J. Lewnau, J.M. Sillick & H.M. Wilson, 1994. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25: 951–961.CrossRefPubMedGoogle Scholar
  17. Scott, A., D. Woodfield & D.W.R. White, 1998. Allelic composition and genetic background effects on transgene expression and inheritance in white clover. Mol Breed 4: 479–490.CrossRefGoogle Scholar
  18. Wang, J.X., Y. Sun, G.M. Cui & J.J. Hu, 2001. Transgenic maize plants obtained by pollen-mediated transformation. Acta Botanica Sinica 43: 275–279.Google Scholar
  19. Wu, G., H. Cui, G. Ye, Y. Xia, R. Sardana, X. Cheng, Y. Li, I. Altosaar & Q. Shu, 2002. Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. Theor Appl Genet 104: 727–734.CrossRefPubMedGoogle Scholar
  20. Zeng, J.Z., D.J. Wang, Y.Q. Wu, J. Zhang, W.J. Zhou, X.P. Zhu & N.Z. Xu, 1994. Transgenic wheat plants obtained with pollen-tube pathway method. Sci Chin 37: 319–325.Google Scholar
  21. Zeng, J.Z., Y.Q. Wu, D.J. Wang, J. Zhang, Z.R. Ma & Z.Y. Zhou, 1998. Genetic expression in progeny of transgenic plants obtained by using pollen-tube pathway (or delivery) method and approach to the transformation mechanism. Chin Sci Bull 43: 798–803.Google Scholar
  22. Zhao, Z., W. Gu, T. Cai, L. Tagliani, D. Hondred, D. Bond, S. Schroeder, M. Rudert & D. Pierce, 2001. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8: 323–333.CrossRefGoogle Scholar
  23. Zhou, G., J. Weng, Y. Zeng, J. Huang, S. Qian & G. Liu, 1983. Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101: 433–481.PubMedGoogle Scholar
  24. Zhou, G., J. Weng, Z. Gong, Y. Zeng, W. Yang, W. Shen, Z. Wang, Q. Tao, J. Huang, S. Qian, G. Liu, M. Ying, D. Xue, A. Hong, Y. Xu, B. Chen & X. Duan, 1988. Molecular breeding of agriculture: A technique for introducing exogenous DNA into plants after self-pollination. Sci Agric Sinica 21: 1–6.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Yongsheng Zhang
    • 1
  • Xiaoyan Yin
    • 1
  • Aifang Yang
    • 1
  • Guosheng Li
    • 1
  • Juren Zhang
    • 1
  1. 1.School of Life ScienceShandong UniversityJinanP.R. China

Personalised recommendations