, Volume 145, Issue 3, pp 339–347 | Cite as

Vigour evaluation for genetics and breeding in rose

  • Z. F. Yan
  • O. Dolstra
  • T. Hendriks
  • T. W. Prins
  • P. Stam
  • P. B. Visser


Breeding of cut and pot rose cultivars for efficient production under low-energy conditions in greenhouses will be facilitated by understanding the inheritance of vigour. To get insight into the genetic variation of vigour-related traits, a diploid rose population was employed for an evaluation study in greenhouses in The Netherlands and Denmark. For all the traits investigated the population showed a continuous quantitative variation as well as a considerable transgression. For most of the traits, the genetic variation found among the tested entries was highly significant and tended to be large in comparison to the effects of genotype by environment interaction. The heritability based on means of the traits was high and ranged from 68 to 92%. Strong simple correlations (r = 0.65 to 0.95) were found among the traits shoot length, leaf area, leaf dry weight, stem dry weight, total dry weight and growth rate. The total dry weight and leaf area are suggested to be good parameters for early selection of rose genotypes with vigorous growth under suboptimal growth conditions.


energy efficiency greenhouse production Rosa suboptimal growth condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berninger, E. & J. Philouze, 1988. Energy saving through breeding for adaptation to greenhouse production. Acta Hort 229: 31–37.Google Scholar
  2. Bonierbale, M.W., R.L. Plaisted & S.D. Tanksley, 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genet 120: 1095–1103.Google Scholar
  3. Bryan, G.J., K. McLean, J.E. Bradshaw, W.S. De Jong, M. Philips, L. Castelli & R. Waugh, 2002. Mapping QTLs for resistance to the cyst nematode Globodera pallida derived from the wild potato species Solanum vernei. Theor Appl Genet 105: 68–77.Google Scholar
  4. Cisse, N.D. & G. Ejeta, 2003. Genetic variation and relationships among seedling vigour traits in sorghum. Crop Sci 43: 824–828.CrossRefGoogle Scholar
  5. Costa, C., 2002. The role of the leaf in growth dynamics and rooting of leafy stem cutting of rose. PhD thesis, Wageningen University, The Netherlands.Google Scholar
  6. Crespel, L., M. Chirollet, E. Durel, D. Zhang, J. Meynet & S. Gudin, 2002. Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor Appl Genet 105: 207–1214.Google Scholar
  7. Cui, K.H., S.B. Peng, Y.Z. Xing, C.G. Xu, S.B. Yu & Q. Zhang, 2002. Molecular dissection of seedling-vigour and associated physiological traits in rice. Theor Appl Genet 105: 745–753.PubMedGoogle Scholar
  8. Debener, T. & L. Mattiesch, 1999. Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99: 891–899.CrossRefGoogle Scholar
  9. Debener, T., 2003. Inheritance of characters. In: A. Roberts, T. Debener & S. Gudin (Eds.), Encyclopedia of Rose Science, pp. 286–292. Elsevier Science, Oxford.Google Scholar
  10. De Vries, D.P., L. Smeets & L.A. Dubois, 1980. Genetic variation for the time of first flower and shoot length in Hybrid tea-rose seedling populations under a range of temperatures. Sci Hortic 13: 61–66.CrossRefGoogle Scholar
  11. De Vries, D.P., L. Smeets & L.A. Dubois, 1982. Interaction of temperature and light on growth and development of hybrid tea-rose seedlings with reference to breeding for lower-energy requirements. Sci Hortic 17: 377–382.CrossRefGoogle Scholar
  12. De Vries, D.P., 1993. The vigour of glasshouse roses. PhD thesis, Wageningen University, The Netherlands.Google Scholar
  13. De Vries, D.P. & L.A. Dubois, 1996. Rose breeding: Past, present, prospective. Acta Hort 424: 241–248.Google Scholar
  14. Echt, C.S., K.K. Kidwell, S.J. Knapp, T.C. Osborn & T.J. McCoy, 1993. Linkage mapping in diploid alfafa (Medicago sativa). Genome 37: 61–71.Google Scholar
  15. Fuchs, H.W., 1994. Scion-rootstock relationships and root behaviour in glasshouse roses. Ph.D. Thesis, Wageningen University, The Netherlands.Google Scholar
  16. Gehardt, C. & J.T. Valkonen, 2001. Organization of genes controlling disease resistance in the potato genome. Ann Rev Phytopathol 39: 79–102.Google Scholar
  17. Gudin, S., 2000. Rose: Genetics and breeding. Plant Breed Rev 17: 159–189.Google Scholar
  18. Hamalainen, J.H., K.N. Watanabe, J.T. Valkonen, A. Arihara, R.L. Plaisted, E. Pehu, L. Miller & S.A. Slack, 1997. Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theor Appl Genet 94: 192–197.Google Scholar
  19. Hartl, D.L., 1980. Principles of population genetics, Sinauer Associates Inc., Mass. USA.Google Scholar
  20. Hu, X.M., 2001. Growth and productivity of cut rose as related to the rootstock. PhD thesis, Wageningen University, The Netherlands.Google Scholar
  21. Kool, M.T., 1996. System development of glasshouse roses. PhD thesis, Wageningen University, The Netherlands.Google Scholar
  22. Korner, O., 2003. Crop based climate regimes for energy saving greenhouse cultivation. PhD thesis, Wageningen University, The Netherlands.Google Scholar
  23. Payne, R., D. Murray, S. Harding, D. Baird, D. Soutar & P. Lane, 2002. GenStat® for WindowsTM (6th Edition) Introduction, VSN International, Oxford.Google Scholar
  24. Rami, J.F., P. Dufour, G. Trouche, G. Fliedel, C. Mestres, F. Davrieux, P. Blanchard & P. Hamon, 1998. Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97: 605–616.CrossRefGoogle Scholar
  25. Redona, E.D. & D.J. Mackill, 1996. Genetic variation for seedling vigour traits in rice. Crop Sci 36: 285–290.CrossRefGoogle Scholar
  26. Regan, K.L., K.H. Siddique, N.C. Turner NC & B.R. Whan, 1992. Potential for increasing early vigour and total biomass in spring wheat. 2. Characteristics associated with early vigour. Aust J Agric Res 43: 541–553.CrossRefGoogle Scholar
  27. Revilla, P., A. Butrón, R.A. Malvar & A. Ordás, 1999. Relationships among kernel weight, early vigour, and growth in maize. Crop Sci 39: 654–658.CrossRefGoogle Scholar
  28. Sabaghpour, S.H., J. Kumar & T.N. Rao, 2003. Inheritance of vigour and its association with other characters in chickpea. Plant Breed 122: 542–544.CrossRefGoogle Scholar
  29. Stam, P., 2003. Marker-assisted introgression: speed at any cost? In: Van Hintum T.J., A. Lebeda, D. Pink & J.W. Schut (Eds.), Eucarpia Leafy Vegetables, pp. 117–124. Kluwer Academic Publishers.Google Scholar
  30. Smeets, L., 1978. The phytotron of the Institute for Horticultural Plant Breeding (IVT), Wageningen, The Netherlands. Neth J Agric Sci 26: 8–12.Google Scholar
  31. Tanksley, S.D. & S.R. McCouch, 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.CrossRefPubMedGoogle Scholar
  32. Tsarouhas, V., U. Gullberg & U. Lagercrantz, 2002. An AFLP and RFLP linkage map and quantitative trait locus (QTL) analysis of growth traits in Salix. Theor Appl Genet 105: 277–288.PubMedGoogle Scholar
  33. Van der Velden, N.J. A., 1992. Economic aspects of greenhouse horticulture: Energy efficiency and CO2 emission in the Dutch glasshouse industry. Acta Hort 312: 87–93.Google Scholar
  34. Xu, Y., 2001. Quantitative trait loci: Separating, pyramiding, and cloning. Plant Breed Rev 15: 85–139.Google Scholar
  35. Yan, Z., C. Denneboom, A. Hattendorf, O. Dolstra, T. Debener, P. Stam & P.B. Visser, 2005. Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110: 766–777.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Z. F. Yan
    • 1
  • O. Dolstra
    • 1
  • T. Hendriks
    • 2
    • 3
  • T. W. Prins
    • 1
  • P. Stam
    • 2
  • P. B. Visser
    • 1
    • 4
  1. 1.Plant Research International B.V.Wageningen University and Research CentreWageningenThe Netherlands
  2. 2.Laboratory of Plant BreedingWageningen University and Research CentreThe Netherlands
  3. 3.Laboratoire de la Physiologie de la Différenciation VégétaleUniversité de Sciences et Technologies de LilleVilleneuve d'AscqFrance
  4. 4.Instituto Agroforestal MediterráneoUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations