Advertisement

Euphytica

, Volume 142, Issue 3, pp 253–263 | Cite as

Breeding tomato for pollen tolerance to low temperatures by gametophytic selection

  • Eva Domínguez
  • Jesús Cuartero
  • Rafael Fernández-Muñoz
Article

Abstract

Haploid selection for traits related to pollen cold tolerance in tomato was performed in segregating populations derived from a Lycopersicon esculentum × L. pennellii hybrid. BC1 populations were obtained by combining normal and low temperature treatments on two stages of pollen development: pollen formation, and germination and pollen tube growth. F1 hybrids were cultivated under low and normal temperatures and their pollen was used to pollinate L. esculentum plants at low and normal temperatures. The four BC1 populations obtained were tested for the quality and quantity of pollen produced at low temperatures. The population obtained by cold treatment at both stages had a significantly improved pollen germination ability at low temperatures. The two other coldselected BC1 populations showed no differences compared with the unselected BC population. A second cycle of pollen selection, corresponding to BC2, was applied in order to test its persistence in the subsequent generations and the possibility to further improve the character. This second cycle showed no improvement although some plants retained the high pollen germination ability at low temperatures that was observed in the first cycle. Hence, gametophytic selection of some characters related with tomato pollen performance may be feasible, at least for the first cycle of selection.

Keywords

gametophytic selection in vitro germination L. pennellii Lycopersicon esculentum pollen cold tolerance pollen quantity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonner, L.J., 1988. Pollination biology of Lycopersicon esculentum Mill. in summer and in winter. PhD Thesis, University of Reading, U.K.Google Scholar
  2. Chikkodi, S.B. & R.L. Ravikumar, 2000. Influence of pollen selection for Alternaria helianthi resistance on the progeny performance against leaf blight in sunflower (Helianthus annuus L.). Sex Plant Reprod 12: 222–226.Google Scholar
  3. Darakov, O.B., 1995. Gametophyte selection of tomatoes for resistance to early blight disease. Sex Plant Reprod 8: 95–98.CrossRefGoogle Scholar
  4. den Nijs, A.P.M., B. Maisonneuve & N.G. Hogenboom, 1986. Pollen selection in breeding glasshouse tomatoes for low energy conditions. In: D.L. Mulcahy, G.B. Mulcahy & E. Ottaviano (Eds.), Biotechnology and Ecology of Pollen, pp. 125–130. Springer-Verlag, New York.Google Scholar
  5. Domínguez, E., N. Ruiz-Camacho, M. Álvarez, J. Cuartero & R. Fernández-Muñoz (submitted). Genetics of tomato pollen tolerance to low temperatures from intra and interspecific crosses.Google Scholar
  6. Fernández-Muñoz, R. & J. Cuartero, 1991. Effects of temperature and irradiance on stigma exertion, ovule viability and embryo development in tomato. J Hort Sci 66: 395–401.Google Scholar
  7. Fernández-Muñoz, R., J.J. González-Fernández & J. Cuartero, 1994. Methods for testing the fertility of tomato pollen formed at low temperature. J Hort Sci 69: 1083–1088.Google Scholar
  8. Fernández-Muñoz, R., J.J. González-Fernández & J. Cuartero, 1995a. Variability of pollen tolerance to low temperatures in tomato and related wild species. J Hort Sci 70: 41–49.Google Scholar
  9. Fernández-Muñoz, R., J.J. González-Fernández & J. Cuartero, 1995b. Genetics of the viability of pollen grain produced at low temperatures in Lycopersicon Mill. Euphytica 84: 139–144.CrossRefGoogle Scholar
  10. Frascaroli, E., P. Landi, M. Villa & M. Sari-Gorla, 1995. Effect of pollen selection for alachlor tolerance in maize. Crop Sci 35: 1322–1326.Google Scholar
  11. Frascaroli, E. & D.D. Songstad, 2001. Pollen genotype selection for a simply-inherited qualitative factor determining resistance to chlorsulfuron in maize. Theor Appl Genet 102: 342–346.CrossRefGoogle Scholar
  12. Frova, C., P. Portaluppi, M. Villa & M. Sari-Gorla, 1995. Sporophytic and gametophytic components of thermotolerance affected by pollen selection. J Hered 86: 50–54.Google Scholar
  13. Goldberg, R.B., T.P. Beals & P.M. Sanders, 1993. Anther development: Basic principles and practical applications. Plant Cell 5: 1217–1229.CrossRefPubMedGoogle Scholar
  14. Hormaza, J.I. & M. Herrero, 1992. Pollen selection. Theor Appl Genet 83: 663–672.CrossRefGoogle Scholar
  15. Hormaza, J.I. & M. Herrero, 1996. Male gametophytic selection as a plant breeding tool. Sci Hort 65: 321–333.CrossRefGoogle Scholar
  16. Khush, G.S. & C.M. Rick, 1963. Meiosis in hybrids between Lycopersicon esculentum and Solanum pennellii. Genetica 33: 167–183.Google Scholar
  17. Kovács, G. & B. Barnabás, 1992. Production of highly cold tolerant maize inbred lines by repeated gametophytic selection. In: E. Ottaviano, D.L. Mulcahy, G.B. Mulcahy & M. Sari-Gorla (Eds.), Angiosperm Pollen and Ovules, pp. 359–363. Springer, New York.Google Scholar
  18. Landi, P., E. Frascaroli, R. Tuberosa & S. Conti, 1989. Comparison between responses to gametophytic and sporophytic recurrent selection in maize (Zea mays L.). Theor Appl Genet 77: 761– 767.CrossRefGoogle Scholar
  19. Liu, S.C., B.E. Liedl & M.A. Mutschler, 1995. Alterations of the manifestations of hybrid breakdown in Lycopersicon esculentum L. pennellii F2 populations containing L. esculentum versus L. pennellii cytoplasm. Sex Plant Reprod 8: 361–368.CrossRefGoogle Scholar
  20. Maisonneuve, B., N.G. Hogenboom & A.P.M. den Nijs, 1986. Pollen selection in breeding tomato (Lycopersicon esculentum Mill.) for adaptation to low temperature. Euphytica 35: 983–992.CrossRefGoogle Scholar
  21. Maissoneuve, B. & J. Philouze, 1982. Action des basses températures nocturnes sur une collection variétale de tomate (Lycopersicon esculentum Mill.). I. Etude de la production des fruits et de la valeur fécondante du pollen. Agronomie 2: 443–452.Google Scholar
  22. Moyle, L.C. & E.B. Graham, 2005. Genetics of hybrid incompatibility between Lycopersicon esculentum and L. hirsutum. Genetics 169: 355–373.CrossRefPubMedGoogle Scholar
  23. Mulcahy, D.L., M. Sari-Gorla & G.M. Mulcahy, 1996. Pollen selection – Past, present and future. Sex Plant Reprod 9: 353–356.CrossRefGoogle Scholar
  24. Mutschler, M.A. & B.E. Liedl, 1994. Interspecific crossing barriers in Lycopersicon and their relationship to self-incompatibility. In: E.G. Williams, A.E. Clarke & R.B. Knox (Eds.), Genetic Control of Self-Incompatibility and Reproductive Development in Flowering Plants, pp. 164–188. Kluwer, Dordrecht, The Netherlands.Google Scholar
  25. Mutton, L., B.D. Patterson & V.O. Nguyen, 1987. Two stages of pollen development are particularly sensitive to low temperature. TGC Rep 37: 56–57.Google Scholar
  26. Pedersen, S., V. Simonsen & V. Loeschcke, 1987. Overlap of gametophytic and sporophytic gene expression in barley. Theor Appl Genet 75: 200–206.CrossRefGoogle Scholar
  27. Picken, A.J.F., 1984. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill.). J Hort Sci 59: 1–13.Google Scholar
  28. Popov, V.V., 1972. Cytological control of the pairing of homologous at meiosis in representatives of the genus Lycopersicon. Tourn Byull Vsesoyuznogo Ordena Lenina Inst. Rast. Imeni NI Vavilova 22: 64–71.Google Scholar
  29. Pressman, E., R. Shaked, K. Rosenfeld & A. Hefetz, 1999. A comparative study of the efficiency of bumblebees and an electric bee in pollinating unheated greenhouse tomatoes. J Hort Sci Biotech 74: 101–104.Google Scholar
  30. Quesada, M., J.A. Winsor & A.G. Stephenson, 1996. Effects of pollen competition on the reproductive performance in cucurbit hybrids (Cucurbitaceae): F1 and back cross generations. Can J Bot 74: 1113–1118.Google Scholar
  31. Rajora, O.P. & L. Zsuffa, 1986. Sporophytic and gametophytic gene expression in Populus deltoides Marsh, Populus nigra L. and Populus maximowiczii Henry. Can J Genet Cytol 28: 476–482.Google Scholar
  32. Ravikumar, R.L., B.S. Patil & P.M. Salimath, 2003. Drought tolerance in sorghum by pollen selection using osmotic stress. Euphytica 133: 371–376.CrossRefGoogle Scholar
  33. Rodríguez-Garay, B. & J.R. Barrow, 1988. Pollen selection for heat tolerance in cotton. Crop Sci 28: 857–859.Google Scholar
  34. Sari-Gorla, M., S. Ferrario, E. Frascaroli & C. Frova, 1994. Sporophytic response to pollen selection for alachlor tolerance in maize. Theor Appl Genet 88: 812–817.CrossRefGoogle Scholar
  35. Sari-Gorla, M., S. Ferrario, L. Gianfranceschi & M. Villa, 1992. Herbicide tolerance in maize – genetics and pollen selection. In: E. Ottaviano, D.L. Mulcahy, G.B. Mulcahy & M. Sari-Gorla (Eds.), Angiosperm Pollen and Ovules, pp. 364–369. Springer, New York.Google Scholar
  36. Sari-Gorla, M., C. Frova & E. Redaelli, 1986a. Extent of gene expression at the gametophytic phase in maize. In: D.L. Mulcahy, G.B. Mulcahy & E. Ottaviano (Eds.), Biotechnology and Ecology of Pollen, pp. 27–32. Springer, New York.Google Scholar
  37. Sari-Gorla, M., C. Frova, G. Binelli & E. Ottaviano, 1986b. The extent of gametophytic gene expression in maize. Theor Appl Genet 72: 42–47.Google Scholar
  38. Searcy, K.B. & M.R. MacNair, 1993. Developmental selection in response to environmental conditions of the maternal parent in Mimulus guttatus. Evolution 47(1): 13–24.Google Scholar
  39. SPSS, 2001. SPSS for Windows, Release 11.0. SPSS, Chicago.Google Scholar
  40. Tanksley, S.D., D. Zamir & C. Rick, 1981. Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science 213: 453–455.Google Scholar
  41. Weeden, N.F., 1986. Identification of duplicate loci and evidence for postmeiotic gene expression in pollen. In: D.L. Mulcahy, G.B. Mulcahy & E. Ottaviano (Eds.), Biotechnology and Ecology of Pollen, pp. 9–14. Springer, New York.Google Scholar
  42. Zamir, D. & I. Gadish, 1987. Pollen selection for low temperature adaptation in tomato. Theor Appl Genet 74: 545–548.CrossRefGoogle Scholar
  43. Zamir, D., S.D. Tanksley & R.A. Jones, 1982. Haploid selection for low tolerance of tomato pollen. Genetics 101: 129– 137.Google Scholar
  44. Zamir, D. & E.C. Vallejos, 1983. Temperature effects on hapolid selection of tomato microspores and pollen grains. In: D.L. Mulcahy & E. Ottaviano (Eds.), Pollen: Biology and Implications for Plants Breeding, pp. 335–342. Elsevier, New York.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Eva Domínguez
    • 1
  • Jesús Cuartero
    • 1
  • Rafael Fernández-Muñoz
    • 1
  1. 1.Estación Experimental La MayoraConsejo Superior de Investigaciones CientíficasAlgarrobo-Costa (Málaga)Spain

Personalised recommendations