, Volume 145, Issue 3, pp 247–257 | Cite as

Inheritance of trichomes and resistance to pod borer (Helicoverpa armigera) and their association in interspecific crosses between cultivated pigeonpea (Cajanus cajan) and its wild relative C. scarabaeoides

  • Rupakula Aruna
  • D. Manohar Rao
  • L. J. Reddy
  • Hari D. Upadhyaya
  • Hari C. Sharma


The legume pod borer, Helicoverpa armigera, is one of the most devastating pests of pigeonpea. High levels of resistance to pod borer have been reported in the wild relative of pigeonpea, Cajanus scarabaeoides. Trichomes (their type, orientation, density and length) and their exudates on pod wall surface play an important role in the ovipositional behavior and host selection process of insect herbivores. They have been widely exploited as an insect defense mechanism in number of crops. In the present investigation, inheritance of resistance to pod borer and different types of trichomes (A, B, C and D) on the pod wall surface in the parents (C. cajan and C. scarabaeoides) and their F1, F2, BC1 (C. cajan × F1), and F3 generations has been studied. Trichomes of the wild parents (high density of the non-glandular trichomes C and D, and glandular trichome B and low density of glandular trichome A) were dominant over the trichome features of C. cajan. A single dominant gene as indicated by the segregation patterns individually will govern each trait in the F2 and backcross generation. Segregation ratio of 3 (resistant): 1 (susceptible) for resistance to pod borer in the F2 generation under field conditions was corroborated with a ratio of 1:1 in the backcross generation, and the ratio of 1 non-segregating (resistant): 2 segregating (3 resistant: 1 susceptible): 1 non-segregating (susceptible) in F3 generation. Similar results were obtained for pod borer resistance under no-choice conditions. Resistance to pod borer and trichomes associated with it (low density of type A trichome and high density of type C) are governed individually by a dominant allele of a single gene in C. scarabaeoides. Following backcrossing, these traits can be transferred from C. scarabaeoides into the cultivated background.


Cajanus cajan C. scarabaeoides Helicoverpa armigera inheritance trichomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armes, N.J., D.R. Jadhav & K.R. DeSouza, 1996. A Survey of insecticide resistance in Helicoverpa armigera in the Indian subcontinent. Bull Ent Res 86: 499–514.CrossRefGoogle Scholar
  2. Ascensao, L., N. Marques & M.S. Pais, 1995. Glandular trichomes on vegetative and reproductive organs of Leonotis leonurus (Lamiaceae). Ann Bot 75: 619–626.Google Scholar
  3. Bacchetta, L., P.C. Remotti, A. Lai, S. Arnone, V. Beinat & A. Sonnino, 1993. Glandular trichomes as a possible defense mechanism against Colorado potato beetle (Leptinotarsa decemlineata, Say) and late blight (Phytophthora infestans Mont. De Bary). In Abstracts of the 12th Triennial Conference of the European Association for Potato Research, 18–23 July 1993, pp. 397–398, Paris, France.Google Scholar
  4. Bernays, E.A. & R.F. Champman, 1994. Host-plant selection by phytophagopus insects. Chapman & Hall, New York.Google Scholar
  5. Bisen, S.S. & A.R. Sheldrahe, 1981. The anatomy of the pigeonpea. Research Bulletin No. 5. International Crop Research Institute for the Semi –Arid Tropics (ICRISAT), Patancheru 502 324, A.P India.Google Scholar
  6. David, H. & S. Easwaramoorthy, 1998. Physical resistance mechanisms in insect plant interaction. In: Ananthakrishna, T.N. & Raman, A. (Eds.), Dynamics of Insect-plant Interactions recent Advances and Future Trends, pp. 45–70. Oxford & IBH publishing, New Delhi, India.Google Scholar
  7. Green, P.W.C., P.C. Stevenson, M.S.J. Simmonds & H.C. Sharma, 2003. Phenolic compounds on the pod-surface of pigeonpea, Cajanus cajan, mediate feeding behavior of Helicoverpa armigera larvae. J Chem Ecol 29: 811–821.CrossRefPubMedGoogle Scholar
  8. ICRISAT, 1992. The Medium Term Plan, Vol. 1. International Crop Research Institute for the Semi-Arid Tropics. Patancheru 502324, Andhra Pradesh, India.Google Scholar
  9. Jeffree, C.E., 1986. The cuticle, epicuticular wax and trichomes of plants, with reference to their structure, functions, and evolution. In: Juniper, B.E. & Southwood, T.R.E. (eds.), Insects and plant surfaces, pp. 23–64. Edward Arnold publishers Ltd, London, UK.Google Scholar
  10. Karkkainen, K. & J. Agren, 2002. Genetic basis of trichome production in Arabidopsis lyrata. Hereditas 136: 219–226.CrossRefPubMedGoogle Scholar
  11. Kennedy, G.G., 2003. Tomato, pests, parasotoids and predators: tritrophic interactions involving the genus Lycopersicon. Ann Rev Ent 48: 51–72.Google Scholar
  12. Kole, C., 1996. Molecular mapping of a locus controlling resistance to Albuga candida in Brassica rapa. Phytopathol 86: 367–369Google Scholar
  13. Lai, A., V. Cianciolo, S. Chiavarini & A. Sonnino, 2000. Effects of glandular trichomes on the development of Phytophthora infestans infection in Potato (Solanum tuberosum). Euphytica 114(3): 165–174.CrossRefGoogle Scholar
  14. Lam, W.-K.F. & L.P. Pedigo, 2001. Effect of trichome density on soybean pod feeding by adult Bean leaf Beetles (Coleoptera: Chrysomelidae) J Econ Ent 94: 1459–1463.Google Scholar
  15. Lateef, S.S., 1992. Scope and limitations of host plant resistance in pulses for the control of Helicoverpa armigera. In: J.N. Sachan (ed.), Helicoverpa management Current status and future statergies, pp. 31–37 Indian Institute of Pulses Research, Kanpur.Google Scholar
  16. Levin, D.A., 1973. The role of trichomes in plant defense. Q. Rev Biol 48: 3–15.CrossRefGoogle Scholar
  17. Muigai, S.G., D.J. Schuster, J.W. Scott, M.J. Basset & H.J. McAuslane, 2002. Mechanisms of resistance in lycopersicon germplasm to the white fly Bemisia argentofoli. Phytoparasitica 30: 347–360.Google Scholar
  18. Navasero, R.C. & S.B. Ramaswamy, 1991. Morphology of leaf surface trichomes and its influence on egg laying by Heliothis virenscens. Crop Sci 31: 324–353.CrossRefGoogle Scholar
  19. Panse, V.G. & P.V. Sukhatme, 1967. Statistical methods for agricultural workers. Indian Council of Agricultural research, New Delhi.Google Scholar
  20. Peter, A.J., T.G. Shanower & J. Romies, 1995. The role of plant trichomes in insect resistance: A selective review. Phytophaga 7: 41–64.Google Scholar
  21. Pundir, R.P.S. & R.B. Singh, 1985. Biosystematic relationship among Cajanus, Atylosia and Rhynchosia species and evolution of Pigeonpea (Cajanus cajan (L.) Millspaugh). Theor Appl Genet 69: 531–534.CrossRefGoogle Scholar
  22. Pundir, R.P.S. & R.B. Singh, 1987. Possibility of genetic improvement in pigeonpea utilising the wild genetic resourses. Euphytica 36: 33–37.CrossRefGoogle Scholar
  23. Reddy, L.J., J.M. Green & D. Sharma, 1981. Genetics of Cajanus cajan (L.) Millsp. × Atylosia spp. In: Proceedings of the International Workshop on Pigeonpea, Volume 2, 15–19 December 1980, pp 39–50. ICRISAT Centre, India. Patancheru, A.P., India.Google Scholar
  24. Reddy, M.V., V.K. Sheila, A.K. Murthy, & N. Padma, 1995. Mechanism of resistance to Aceria cajani in pigeonpea. Int Trop Plant Dis 13: 51–57.Google Scholar
  25. Romies, J., T.G. Shanower & A.J. Peter, 1999. Trichomes on pigeonpea [Cajanus cajan (L.) Millspaugh] and two wild Cajanus spp. Crop Sci 39: 564–569.Google Scholar
  26. Sachan, J.N., 1992. Present status of Helicoverpa armigera in pulses and strategies for its management. In: J.N. Sachan (ed.), Helicoverpa management: Current status and future strategies, pp. 7–23. Indian Institute of Pulses Research, Kanpur.Google Scholar
  27. Saxena, K.B., L. Singh, M.V. Reddy, U. Singh, S.S. Lateef, S.B. Sharma & P. Remanandan, 1990. Inter species variation in Atylosia scarabaeoides (L.) Benth. a wild relative of pigeonpea [Cajanus cajan (L.) Millsp.]. Euphytica 49: 185–191.Google Scholar
  28. Saxena, K.B., M.V. Reddy, V.R. Bhagwat & S.B. Sharma, 1996. Prelimnary studies on the incidence of major diseases and insects in Cajanus platycarpus germplasm at ICRISAT Asia center. Intl Chickpea Pigeonpea Newsl 3: 51–52.Google Scholar
  29. Saxena, K.B., 2000. Pigeonpea.. In S.K. Gupta (ed.) Plant Breeding: Theory and Techniques, pp. 82–112. Agrobios, Jodhpur, India.Google Scholar
  30. Shanower, T.G., M. Yoshida, & A.J. Peter, 1997. Survival, growth, fecundity, and behaviour of Helicoverpa armigera (Lepidoptera: Noctuidae) on pigeonpea and two wild Cajanus species. J Econ Entomol 90: 837–841.Google Scholar
  31. Sharma, H.C., P.W.C. Green, P.C. Stevenson & M.J. Simmonds, 2001. “What makes it so tasty for the pest?” In: Identification of Helicoverpa armigera (Hubner) feeding stimulants and location of their production on the pod surface of Pigeonpea [Cajanus cajan (L.) Millspaugh], pp. 85. Final Technical Report, Competitive Research Facility (CRF) Project R7029C, ICRISAT, Patancheru, India.Google Scholar
  32. Simmons, A.T. & M.G. Geoff, 2004. Trichome-based host plant resistance of Lycopersicon species and the biocontrol agent Mallada signata: Are they compatible? Entomologia Experimentalis et Applicata 113: 95–101.CrossRefGoogle Scholar
  33. Simmons, A.T., M.G. Geoff, D. Mc Granth, H.I. Nicol & M.M. Peter, 2003. Trichomes of Lycopersicon spp. and their effect on Myzus persicae (sulzer) (Hemiptera: Aphididae). Austr J Entomol 42(4): 373–378.Google Scholar
  34. Simmons, A.T., M.G. Geoff, D. Mc Granth, M.M. Nicol & H.I. Peter, 2004. Entrapment of Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae) on glandular trichomes of Lycopersicon species. Austr J Entomol 43: 196–200.Google Scholar
  35. Singh, I.P., D.P. Srivastava & N.P. Singh, 2000. Inheritance of certain morphological characters in interspecific crosses of Cajanus species. Indian J Agric Sci 70: 667–670.Google Scholar
  36. Stipanovic, R.D., 1983. Function and chemistry of plant trichomes and glands in insect resistance. In: P.A. Hedin (ed.), Plant Resistance to Insects, American Chemical Society Symposium Series 208, Washington, DC, U.S.A.Google Scholar
  37. Verulkar, S.B., D.P. Singh & A.K. Bhattacharya, 1997. Inheritance of resistance to podfly and podborer in the interspecific cross of pigeonpea. Theor Appl Genet 95: 506–508.CrossRefGoogle Scholar
  38. Webster, J.A., D.H. Smith, H. Rathke & C.E. Cress, 1975. Persistence to cereal leaf beetle in wheat: Density and strength of leaf surface pubescence in four wheat lines. Crop Sci 15: 199–202.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Rupakula Aruna
    • 1
  • D. Manohar Rao
    • 2
  • L. J. Reddy
    • 1
  • Hari D. Upadhyaya
    • 1
  • Hari C. Sharma
    • 1
  1. 1.International Crops Research Institute for the Semi- Arid Tropics (ICRISAT)PatancheruIndia
  2. 2.Department of GeneticsOsmania UniversityHyderabadIndia

Personalised recommendations