, Volume 142, Issue 1–2, pp 161–167 | Cite as

Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1

  • Volker Mohler
  • Friedrich J. Zeller
  • Gerhard Wenzel
  • Sai L. K. Hsam


The Triticum dicoccoides-derived wheat line Zecoi-1 provides effective protection against powdery mildew. F3 segregation analysis of Chinese Spring × Zecoi-1 hybrids showed that resistance in line Zecoi-1 is controlled by a single dominant gene. Amplified fragment length polymorphism (AFLP) analysis of bulked segregants from F3s showing the homozygous resistant and susceptible phenotypes identified eight markers, of which four were associated with the resistance allele in repulsion phase. Following the assignment of these four repulsion phase AFLP markers to wheat chromosome 2B with the aid of Chinese Spring nulli-tetrasomic lines, they were physically mapped in the terminal breakpoint interval 0.89 (2BL-6)–1.00 (telomere) of chromosome 2BL. Genetic and physical mapping of simple sequence repeat markers from the distal half of chromosome 2BL located the wild emmer-derived powdery mildew resistance gene distal of breakpoint 0.89 in deletion line 2BL-6. Based on disease response patterns, genomic origin and chromosomal location the resistance gene in Zecoi-1 is temporarily designated MlZec1.


breakpoint interval (bin) mapping genetic mapping molecular markers powdery mildew resistance genes wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buerstmayr, H., M. Stierschneider, B. Steiner, M. Lemmens, M. Griesser, E. Nevo & T. Fahima, 2003. Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 130: 17–23.CrossRefGoogle Scholar
  2. Delaney, D.E., S. Nasuda, T.R. Endo, B.S. Gill & S.H. Hulbert, 1995. Cytologically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet 91: 568–573.Google Scholar
  3. Endo, T.R. & B.S. Gill, 1996. The deletion stocks of common wheat. J Hered 87: 295–307.Google Scholar
  4. Gerechter-Amitai, Z.K. & R.W. Stubbs, 1970. A valuable source of yellow rust resistance in Israeli populations of wild emmer, Triticum dicoccoides Koern. Euphytica 19: 12–21.Google Scholar
  5. Gerechter-Amitai, Z.K. & C.H. van Silfhout, 1984. Resistance to powdery mildew in wild emmer (Triticum dicoccoides Körn.). Euphytica 33: 273–280.CrossRefGoogle Scholar
  6. Hsam, S.L.K. & F.J. Zeller, 1997. Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar Amigo. Plant Breeding 116: 110–122.Google Scholar
  7. Hsam, S.L.K. & F.J. Zeller, 2002. Breeding for powdery mildew resistance in common wheat (T. aestivum L. em Thell.). In: R.R. Bélanger, W.R. Bushnell, A.J. Dik & T.L.W. Carver (Eds.), The Powdery Mildews: A Comprehensive Treatise, APS Press, St. Paul, U.S.A., pp. 219–238.Google Scholar
  8. Hsam, S.L.K., I.F. Lapochkina & F.J. Zeller, 2003. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat-Aegilops speltoides translocation line. Euphytica 133: 367– 370.CrossRefGoogle Scholar
  9. Huang, X.Q., F.J. Zeller, S.L.K. Hsam, G. Wenzel & V. Mohler, 2000a. Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43: 298– 305.CrossRefGoogle Scholar
  10. Huang, X.Q., S.L.K. Hsam, F.J. Zeller, G. Wenzel & V. Mohler, 2000b. Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101: 407–414.CrossRefGoogle Scholar
  11. Liu, Z.Y., Q.X. Sun, Z.F. Ni, E. Nevo & T.M. Yang, 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123: 21–29.CrossRefGoogle Scholar
  12. Ma, Z.Q., M. Röder & M.E. Sorrells, 1996. Frequencies and sequence characteristics of di-, tri-, and tetra-nucleotide microsatellites in wheat. Genome 39: 123–130.PubMedGoogle Scholar
  13. McFadden, E.S., 1930. A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22: 1020–1035.Google Scholar
  14. Mester, D.I., Y.I. Ronin, Y. Hu, J. Peng, E. Nevo & A.B. Korol, 2003. Efficient multipoint mapping: Making use of dominant repulsion-phase markers. Theor Appl Genet 107: 1102–1112.CrossRefPubMedGoogle Scholar
  15. Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci U.S.A. 88: 9828–9832.PubMedGoogle Scholar
  16. Moseman, J.G., E. Nevo, M.A. El-Morshidy & D. Zohary, 1984. Resistance of Triticum dicoccoides collected in Israel to infection with Erysiphe graminis tritici. Euphytica 33: 41–47.CrossRefGoogle Scholar
  17. Moseman, J.G., E. Nevo, Z.K. Gerechter-Amitai, M.A. El-Morshidy & D. Zohary, 1985. Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci 25: 262–265.CrossRefGoogle Scholar
  18. Nevo, E., A.B. Korol, A. Beiles & T. Fahima, 2002. Evolution of Wild Emmer and Wheat Improvement. Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer Verlag, Heidelberg.Google Scholar
  19. Nevo, E., J.G. Moseman, A. Beiles & D. Zohary, 1985. Patterns of resistance of Israeli wild emmer wheat to pathogens I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetica 67: 209–222.Google Scholar
  20. Paillard, S., T. Schnurbusch, M. Winzeler, M. Messmer, P. Sourdille, O. Abderhalden, B. Keller & G. Schachermayr, 2003. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107: 1235–1242.CrossRefPubMedGoogle Scholar
  21. Reader, S.M. & T.E. Miller, 1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53: 57–60.CrossRefGoogle Scholar
  22. Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  23. Rong, J.K., E. Millet, J. Manisterski & M. Feldman, 2000. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115: 121–126.CrossRefGoogle Scholar
  24. Saghai-Maroof, M.A., K.M. Soliman, R.A. Jorgensen & R.W., 1984. Ribosomal spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U.S.A. 81: 8014–8018.PubMedGoogle Scholar
  25. Schwarz, G., M. Herz, X.Q. Huang, W. Michalek, A. Jahoor, G. Wenzel & V. Mohler, 2000. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat. Theor Appl Genet 100: 545–551.CrossRefGoogle Scholar
  26. Singrün, C., S.L.K. Hsam, L. Hartl, F.J. Zeller & V. Mohler, 2003. Powdery mildew resistance gene Pm22 in cultivar Virest is a member of the complex Pm1 locus in common wheat (Triticum aestivum L. em Thell.). Theor Appl Genet 106: 1420–1424.PubMedGoogle Scholar
  27. Singrün, C., S.L.K. Hsam, F.J. Zeller, G. Wenzel & V. Mohler, 2004. Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet 109: 210–214.CrossRefPubMedGoogle Scholar
  28. Somers, D.J., P. Isaac & K. Edwards, 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, Doi: 109:1105-1114.Google Scholar
  29. Tao, W., D. Liu, J. Liu, Y. Feng & P. Chen, 2000. Genetic mapping of the powdery mildew resistance gene Pm6 in wheat by RFLP analysis. Theor Appl Genet 100: 564–568CrossRefGoogle Scholar
  30. Van Ooijen, J.W. & R.E. Voorrips, 2001. Joinmap 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands.Google Scholar
  31. Voorrips, R.E., 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93: 77–78.CrossRefPubMedGoogle Scholar
  32. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.PubMedGoogle Scholar
  33. Werner, J.E., T.R. Endo & B.S. Gill, 1992. Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci U.S.A. 89: 11307–11311.PubMedGoogle Scholar
  34. Xie, C.J., Q.X. Sun, Z.F. Ni, T.M. Yang, E. Nevo & T. Fahima, 2003. Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Genet 106: 341–345.PubMedGoogle Scholar
  35. Xu, S.S., K. Khan, D.L. Klindworth, J.D. Faris & G. Nygard, 2004. Chromosomal location of genes for novel glutenin subunits and gliadins in wild emmer wheat (Triticum turgidum L. var. dicoccoides). Theor Appl Genet 108: 1221–1228.CrossRefPubMedGoogle Scholar
  36. Yahiaoui, N., P. Srichumpa, R. Dudler & B. Keller, 2004. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37: 528–538.CrossRefPubMedGoogle Scholar
  37. Zeller, F.J., J. Lutz & U. Stephan, 1993. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.) 1. Mlk and other alleles at the Pm3 locus. Euphytica 68: 223–229.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Volker Mohler
    • 1
  • Friedrich J. Zeller
    • 1
  • Gerhard Wenzel
    • 1
  • Sai L. K. Hsam
    • 1
  1. 1.Department of Plant Sciences, Center for Life and Food Sciences WeihenstephanTechnical University MunichFreisingGermany

Personalised recommendations