, Volume 140, Issue 1–2, pp 121–131 | Cite as

Current status and future scenarios of hemp breeding



Hemp is a multi-use crop, able to provide fiber, cellulose, seeds and seed oil, cannabinoid, and biomass. Integrating many agroindustrial chains, Cannabis is considered a crop model in which insights into specific metabolic pathways and biosynthetic processes are valuable for improvement of the plant for all sets of industrial derivatives. In this review the hemp breeding status is elucidated and many aspects are focused: (i) recovering, maintenance and characterization of genetic resources; (ii) widening of germplasm and genetic variability; (iii) marker-assisted selection and development of breeding programs; (iv) sexual differentiation; (v) monitoring of THC content. Modern hemp varieties for fiber and other specific end uses have been developed and new varieties are entering production. The scenario for the breeding advances in hemp relies on basic and applied research which provides insights to identify a strategy for the design of modified plants with enhanced performance. This is accounted by the dissection of traits into components and the modification of single steps of the related metabolic pathways. These advances are provided by genomic techniques and are able: (i) to identify key genes encoding enzymes and regulatory factors participating in cannabinoid, fiber and oil biosynthesis; (ii) to identify the mode of regulation of these genes; (iii) to characterize the function of the selected genes through higher, lower or specific expression incited by specific promoters. The identification of molecular markers for specific traits, gathered in a saturated linkage map, will have a remarkable impact on hemp breeding. The advances in basic and applied research make it possible to design methods for the identification of superior parents and cross combinations and the development of selection schemes that rely on less labour-intensive and time-consuming methods.

Key words

genetic advances hemp germplasm improved varieties key genes metabolic pathways multi-use crop 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allavena, D., 1961. Fibranova, nuova varietà di canapa ad alto contenuto di fibra. Sementi Elette 5: 34–44.Google Scholar
  2. Allavena, D., 1967. CS, eine neue Sorte des zweihäusigen Hanfes. Fibra 12: 17–24.Google Scholar
  3. Barbieri, R. & P. Tedeschi, 1968. Eletta Campana e T4, nuove cultivar di canapa per l’ambiente campano. Sementi Elette XIV (6): 412–417.Google Scholar
  4. Bizzarri, M. & P. Ranalli, 1995. Propagazione della canapa da fibra (Cannabis sativa, L.) per talea. L’Informatore Agrario 26: 57–59.Google Scholar
  5. Bócsa, I. & M. Karus, 1998. The cultivation of hemp. Botany, varieties, cultivation and harvesting. Hemptech, Sebastopol (U.S.A.), 172 p.Google Scholar
  6. Bredemann, G., 1924. Beiträge zur Hanfzüchtung II. Anslese faserreicher. Männchen zur Befruchtung durch Faser-bestimmung an der lebeden Pflanze vor deu Blüte. Angew Bot 6: 348–360.Google Scholar
  7. Bredemann, G., 1937. Züchtung des hanfes auf Fasergehalt. Z Pflanzen 12: 259–268.Google Scholar
  8. Bredemann, G., 1953. Verdreifachung des Fasergehalts bei Hanf durch fortgesetzte Männchen und Weib-chenauslese. Mater Veg 2: 167–187.Google Scholar
  9. Bredemann, G., K. Garber, W. Huhnke & R. von Sengbusch, 1961. Die Züchtung von monözischen und diözischen, faserertragreichen Hanfsorten Fibrimon und Fibridia. Zeitschrift für Pflanzenzüchtung 46: 235–245.Google Scholar
  10. Breslavets, L., 1926. Polyploide mitosen bei Cannabis sativa L. Ber Deutsch Bot Ges 44: 498–502.Google Scholar
  11. Carberry, P.S. & R.C. Muchow, 1992. A simulation model of kenaf for assisting fibre industry planning in Northern Australia. Aust J Agric Res 43: 1527–1545.Google Scholar
  12. Carboni, A., S. Forapani, G. Mandolino & P. Ranalli, 1998. A sequence characterized marker for sex genotype in dioecious hemp (Cannabis sativa L.). Abstracts of the XV EUCARPIA General Congress, Viterbo (Italy), September 20–25: 99.Google Scholar
  13. Crescini, F., 1953. Associazione di fattori genetici (linkage) in Cannabis sativa L. Caryologia 5: 289–296.Google Scholar
  14. Dewey, L.H., 1927. Hemp varieties of improved type are result of selection. Yearbook of the Department of Agriculture, U.S.A.: 358–361.Google Scholar
  15. Di Candilo, M., P. Ranalli, C. Bozzi, B. Focher & G. Mastromei, 2000. Preliminary results of tests facing with the controlled retting of hemp. Ind Crops Products 11: 197–203.Google Scholar
  16. Di Candilo, M., P. Ranalli, M.E. Diozzi & G. Grassi, 2002. Attività di miglioramento genetico per la costituzione di nuove varietà di canapa dioiche. Agroindustria 1: 14–18.Google Scholar
  17. Faeti, V., G. Mandolino & P. Ranalli, 1996. Genetic diversity of Cannabis sativa L. germplasm based on RAPD markers. Plant Breeding 115: 367–370.Google Scholar
  18. Feeney, M. & Z.K. Punja, 2003. Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell Dev Biol Plant 39: 578–583.Google Scholar
  19. Fleischmann, R., 1931. Hanf- und Flachskultur in Hungarn. Faserforsch 9: 143–149.Google Scholar
  20. Fleischmann, R., 1934. Beiträge zur Hanfzüchtung. Faserforsch 11: 156–161.Google Scholar
  21. Grassi, G. & P. Ranalli, 1999. Detecting and monitoring plant THC content: Innovative and conventional methods. In: P. Ranalli (Ed.), “Advances in Hemp Research” The Haworth Press, Binghamton, New York (USA): 43–60.Google Scholar
  22. Grishko, N.N. & K.V. Malusha, 1935. Probleme und Richtlinien in Hanfzüchtung. Trudy prikl. 4: 61–67 (Russian).Google Scholar
  23. Grishko, N.N., V.I. Levchenko & V.I. Seletski, 1937. Question of sex in hemp, the production of monoecious forms and of varieties with simoultaneous ripening of both sexes. Vszesoy. Nauchno-Issled. Inst. Konopli, Moskow, Leningrad 5: 73–108 (Russian with English summary).Google Scholar
  24. Heuser, O., 1927. Hanf und Hartfaser. Springer-Verlag, Berlin, Germany.Google Scholar
  25. Hirata, K., 1928. Sex determination in hemp (Cannabis sativa L.). J Genet 19: 65–79.CrossRefGoogle Scholar
  26. Laakkonen, T.T. & J.C. Callaway, 1998. Update on FIN-314. J Int Hemp Assoc 5(1): 34–35.Google Scholar
  27. Mandolino, G. & P. Ranalli, 2002. The applications of molecular markers in genetics and breeding of hemp. J Ind Hemp 7: 7– 23.Google Scholar
  28. Mandolino, G., A. Carboni, M. Bagatta, V.M.C. Moliterni & P. Ranalli, 2002. Occurrence and frequency of putatively Y chromosome linked DNA markers in Cannabis sativa L. Euphytica 126: 211–216.Google Scholar
  29. Mandolino, G., A. Carboni, S. Forapani, V. Faeti & P. Ranalli, 1999. Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.). Theor Appl Genet 98: 86– 92.Google Scholar
  30. Mandolino, G., M. Bagatta, A. Carboni, P. Ranalli & E. de Meijer, 2003. Qualitative and quantitative aspects of the inheritance of chemical phenotype in Cannabis. J Ind Hemp 8: 51–72.Google Scholar
  31. McPhee, 1925. The influence of environment on sex in hemp. J Agric Res 31: 935–943.Google Scholar
  32. Meijer de, E.P.M. 1999. Cannabis germplasm gesources. In: P. Ranalli (Ed.), Advances in Hemp Research, The Haworth Press, Binghamton, New York (U.S.A.): 133–152.Google Scholar
  33. Meijer de, E.P.M., 1995. Fibre hemp cultivars: A survey of origin, ancestry, availability, and brief agronomic charactertistics. J Intl Hemp Assess 2: 66–73.Google Scholar
  34. Meijer de, E.P.M., M. Bagatta, A. Carboni, P. Crucitti, V.M.C. Moliterni, P. Ranalli & G. Mandolino, 2003. The inheritance of chemical phenotype in Cannabis sativa L. Genetics 163: 335–346.PubMedGoogle Scholar
  35. Meijer de, E.P.M., H.M.G. van der Werf, E.W.J.M. Mathijssen & P.W.M. van den Brink, 1995. Constraints to dry matter production in fibre hemp (Cannabis sativa L.). Eur J Agron 4(1): 109– 117.Google Scholar
  36. Ranalli, P., 1998. Hemp. In: G.T. Scarascia, Mugnozza and M.A. Pagnotta, (Eds.), “Italian Contribution to Plant Genetics and Breeding” University of Tuscia, Tuscia, pp. 803– 811.Google Scholar
  37. Ranalli, P., 1999. Agronomical and physiological advances in hemp crops. In: P. Ranalli (ed.), Advances in hemp research, The Haworth Press, Binghamton, New York (U.S.A.), pp. 61–84.Google Scholar
  38. Ranalli, P., 2003. Advances of hemp sector in Italy and its perspective. 1st International Conference of the European Industrial Hemp Association. Hurth (Germany), 24–25 October.Google Scholar
  39. Ranalli, P., G. Mandolino, A. Carboni & M. Di Candilo, 2003. Cannabis sativa: A genetic plant model for industrial end uses. Abstracts XLVII S.I.G.A. Annual Meeting, Verona 24–27 Settembre:
  40. Tamburini, E., M. Di Candilo, B. Perito, M. Polsinellli, P. Ranalli & G. Mastromei, 2002. Selezione, caratterizzazione ed impiego di ceppi batterici nella macerazione controllata della canapa. Agroindustria 1: 49–53.Google Scholar
  41. van der Werf, H.M.G., H.J. Haasken & M. Wijlhuizen, 1994. The effect of daylength on yield and quality of fiber hemp (Cannabis sativa L.). Eur J Agron 3: 117–123.Google Scholar
  42. van der Werf, H.M.G., W.C.A. van Geel, L.J.C. van Gils & A.J. Haverkort, 1995. Nitrogen fertilization and row width affect self-thinning and productivity of fiber hemp (Cannabis sativa L.). Field Crop Res 42: 27–37.Google Scholar
  43. Vedenski, V., 1929. On the methodic and actual problems of fibre hemp breeding. Bull Appl Bot Gent Plant Breed, Leningrad.Google Scholar
  44. Zottini, M., A. Moschella, G. Mandolino & P. Ranalli, 1996. Efforts to improve tissue culture in hemp (Cannabis sativa L.). Abstracts of the Third European Symposium on Industrial Crops and Products, Reims (France), April 22–24, p. 15.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Istituto Sperimentale per le Colture IndustrialiBolognaItaly

Personalised recommendations