Advertisement

Euphytica

, Volume 140, Issue 1–2, pp 13–23 | Cite as

Life Cycle Analysis of field production of fibre hemp, the effect of production practices on environmental impacts

  • Hayo M. G. van der Werf
Article

Summary

Life Cycle Assessment (LCA) was used to assess the environmental impacts of field production of fibre hemp and seven other crops in France. The production of 1 ha of hemp yielded a eutrophication potential of 20.5 kg PO4-equivalents, a global warming potential of 2330 kg CO2-equivalents, an acidification potential of 9.8 kg SO2-equivalents, a terrestrial ecotoxicity potential of 2.3 kg 1,4-dichlorobenzene-equivalents, an energy use of 11.4 GJ, and a land use of 1.02 ha.year. A comparison of hemp (low impacts), wheat (intermediate impacts) and sugar beet (high impacts) revealed that the crops were similar for the relative contributions of emitted substances and resources used to impacts, and for the relative contribution of processes to impacts. A reduction of the impacts of hemp production should focus on eutrophication, and consider the reduction of climate change, acidification and energy use as secondary objectives. Given this objective, the overall environmental effect of the substitution of mineral fertiliser by pig slurry is negative. The introduction of reduced tillage is of interest, as it decreases energy use, acidification and climate change. Measures leading to a reduction in NO3 leaching are highly interesting, as they strongly decrease eutrophication. Implications for hemp breeding are discussed.

Key words

Cannabis sativa L. environmental impact eutrophication farmer practices fibre hemp Life Cycle Assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, E.L., 1980. Marihuana, the First Twelve Thousand Years. Plenum Press, NY, U.S.A.Google Scholar
  2. AGRESTE, 2001. Tableaux de l’Agriculture Bretonne 2001. Direction Régionale de l’Agriculture et de la Forêt, Service Régional de Statistique Agricole, Rennes, France.Google Scholar
  3. Amaducci, S., 2003. HEMP-SYS: Design, development and up-scaling of a sustainable production system for hemp textiles – An integrated quality systems approach. J Ind Hemp 8 (2): 79–83.Google Scholar
  4. Andersson, K., T. Ohlsson & P. Olsson, 1998. Screening life cycle assessment (LCA) of tomato ketchup: A case study. J Clean Prod 6(3–4): 277–288.Google Scholar
  5. Audsley, E., S. Alber, R. Clift, S. Cowell, P. Crettaz, G. Gaillard, J. Hausheer, O. Jolliett, R. Kleijn, B. Mortensen, D. Pearce, E. Roger, H. Teulon, B. Weidema & H. van Zeijts, 1997. Harmonisation of environmental life cycle assessment for agriculture. Final Report Concerted Action AIR3-CT94-2028. Silsoe Research Institute, Silsoe, U.K.Google Scholar
  6. Baudet, J.J., 1999. Effluents d’élevage, des compositions très variables. Oléoscope 54: 10–11.Google Scholar
  7. Bócsa, I., 1995. Die Hanfzüchtung in Ungarn: Zielersetzungen, Methoden und Ergebnisse. In: M. Karus (Ed.) Bioresource Hemp Symposium Reader, 2nd Edn., Nova-Institut, Frankfurt, Germany, pp. 200–215.Google Scholar
  8. Brentrup, F., J. Küsters, H. Kuhlmann & J. Lammel, 2001. Application of the Life Cycle Methodology to agricultural production: An example of sugar beet production with different forms of nitrogen fertilisers. Eur J Agronom 14: 221–233.Google Scholar
  9. BUWAL, 1996. Ökoinventare für Verpackungen. Schriftenreihe Umwelt Nr. 250/1+2, Bundesamt für Umwelt, Wald und Landschaft, Bern, Switzerland.Google Scholar
  10. Cederberg, C., 1998. Life cycle assessment of milk production. A comparison of conventional and organic farming. SIK Report 643, Götenburg, Sweden.Google Scholar
  11. De Meijer, E.P.M., 1995. Fibre hemp cultivars: A survey of origin, ancestry, availability and brief agronomic characteristics. J Int Hemp Assoc 2: 66–73.Google Scholar
  12. Dempsey, J. M., 1975. Hemp. In: Fiber Crops, University of Florida Press, Gainesville, Florida, U.S.A., pp. 46–89.Google Scholar
  13. Du Bois, W.F., 1982. Hennep als grondstof voor de papierindustrie. [Hemp as a raw material for the paper industry.] Bedrijfsontwikkeling 13: 851–856.Google Scholar
  14. ECETOC, 1994. Ammonia emissions to air in western Europe. Technical Report N. 62. European Chemical Industry Ecology & Toxicology Centre, Brussels, Belgium.Google Scholar
  15. FAO, 2004. FAOSTAT Agriculture Data. Available at: http://faostat. fao.org/.
  16. FAO, 2002. Technical Conversion Factors (TCF) for agricultural commodities. Available at: http://www.fao.org/WAICENT/FAOINFO/ECONOMIC/ESS/tcf.pdf.
  17. Fournier, G., C. Richez-Dumanois, J. Duvezin, J.P. Mathieu & M. Paris, 1987. Identification of a new chemotype in Cannabis sativa: Cannabigerol-dominant plants, biogenetic and agronomic prospects. Planta Medica 53: 277–280.PubMedGoogle Scholar
  18. Guinée, J.B., M. Gorrée, R. Heijungs, G. Huppes, R. Kleijn, A. de Koning, L. van Oers, A. Wegener Sleeswijk, S. Suh, H.A. Udo de Haes, H. de Bruijn, R. van Duin & M.A.J. Huijbregts, 2002. Handbook on Life Cycle Assessment. An Operational Guide to the ISO Standards. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  19. Gustafson, A., S. Fleischer & A. Joelsson, 2000. A catchment-oriented and cost-effective policy for water protection. Ecol Eng 14: 419–427.Google Scholar
  20. Hanson, J., 1980. An outline for a U.K. hemp strategy. The Ecologist 10: 260–263.Google Scholar
  21. Heijungs, R., J.B. Guinée, G. Huppes, R.M. Lankreijer, H.A. Udo de Haes, A. Wegener Sleeswijk, A.M.M. Ansems, P.G. Eggels, R. van Duin & H.P. Goede, 1992. Environmental Life Cycle Assessment of Products, I Guide, II Backgrounds. Centre of Environmental Science, Leiden, The Netherlands.Google Scholar
  22. Houghton, J.T., L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg & K. Maskell, 1996. Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, U.K.Google Scholar
  23. Huijbregts, M.A.J., 1999a. Life-cycle impact assessment of acidifying and eutrophying air pollutants. Calculation of characterisation factors with RAINS-LCA. Interfaculty Department of Environmental Science, Faculty of Environmental Science, University of Amsterdam, Amsterdam, The Netherlands.Google Scholar
  24. Huijbregts, M.A.J., 1999b. Priority assessment of toxic substances in LCA. Development and application of the multi-media fate, exposure and effect model USES-LCA. IVAM Environmental Research, University of Amsterdam, Amsterdam, The Netherlands.Google Scholar
  25. Huijbregts, M.A.J., W. Schöpp, E. Verkuijlen, R. Heijungs & L. Reijnders, 2000. Spatially explicit characterisation of acidifying and eutrophying air pollution in life-cycle assessment. J Ind Ecology 4(3): 125–142.Google Scholar
  26. Huijbregts, M.A.J., G. Huppes, A. de Koning, L. van Oers & S. Suh, 2001. LCA Normalisation Factors for the Netherlands, Europe and the World. Centre of Environmental Science, Leiden University, Leiden, Netherlands.Google Scholar
  27. ITCF, 1995. La culture de la pomme de terre de conservation. Institut Technique des Céréales et des Fourrages, Institut Technique de la Pomme de Terre, Paris, France.Google Scholar
  28. Karus, M., 2004. First International Conference of the European Industrial Hemp Association (EIHA). J Ind Hemp, 9(1), 117–121.Google Scholar
  29. Le Clech, B., 1999. Productions végétales. Grandes cultures. Editions Synthèse Agricole, Bordeaux, France.Google Scholar
  30. Le Gouis, J., D. Béghin, E. Heumez & P. Pluchard, 2000. Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Europ J Agronomy 12:163–173.Google Scholar
  31. Mary, B., N. Beaudoin, E. Justes & J.M. Machet, 1999. Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model. Europ J Soil Sci 50: 549–566.Google Scholar
  32. Morvan, T. & P. Leterme, 2001. Vers une prévision opérationnelle des flux d’azote résultant de l’épandage de lisier: Paramétrage d’un modèle dynamique de simulation des transformations de l’azote des lisiers. Ingéniéries 26: 17–26.Google Scholar
  33. Mosier, A., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger & O. van Cleemput, 1998. Closing the global N2O budget: Nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52: 225–248.Google Scholar
  34. Nemecek, T. & A. Heil, 2001. SALCA – Swiss Agricultural Life Cycle Assessment Database. Version 012, December 2001. FAL, Swiss Federal Research Station for Agroecology and Agriculture, Zuerich, Switzerland.Google Scholar
  35. Patyk, A. & G.A. Reinhardt, 1998. Life cycle assessment of hemp products. In D. Ceuterick (Ed.) International conference on life cycle assessment in agriculture, agro-industry and forestry. Proceedings. Brussels, Belgium pp. 39–44.Google Scholar
  36. Pimentel, D., L. McLaughlin, A. Zepp, B. Lakitan, T. Kraus, P. Kleinman, F. Vancini, W.J. Roach, E. Graap, W.S. Keeton & G. Selig, 1991. Environmental and economic impacts of reducing U.S. agricultural pesticide use. In: D. Pimentel (Ed.) CRC Handbook of Pest Management in Agriculture, 2nd edn., pp. 679–718. CRC Press, Boca Raton, Florida, U.S.A.Google Scholar
  37. Pleydell-Bouverie, J. 1994. Cotton without chemicals. New Scientist, 24 September 1994: 25–29.Google Scholar
  38. Pounds, N.J.G., 1979. An Historical Geography of Europe 1500–1840. Cambridge University Press, Cambridge, U.K.Google Scholar
  39. PRé Consultants, 1997. SimaPro 2 Method. Database Manual. Pré Consultants B.V., Amersfoort, The Netherlands.Google Scholar
  40. Reinhardt, G., G. Zemanek, 2000. Ökobilanz Bioenergieträger. Basisdaten, Ergebnisse, Bewertungen. Erich Schmidt Verlag, Berlin, Germany.Google Scholar
  41. Rossier, D., 1998. Ecobilan. Adaptation de la méthode écobilan pour la gestion environnementale de l’exploitation agricole. Service Romand de Vulgarisation Agricole, Lausanne, Switzerland.Google Scholar
  42. Singh, U., J.K. Ladha, E.G. Castillo, G. Punzalan, A. Tirol-Padre & M. Duqueza, 1998. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Res 58: 35–53.Google Scholar
  43. Uri, N.D., J.D. Atwood & J. Sanabria, 1998. The environmental benefits and costs of conservation tillage. Sci Total Env 216: 13–32.Google Scholar
  44. van der Werf, H.M.G., W.C.A. van Geel & M. Wijlhuizen, 1995. Agronomic research on hemp (Cannabis sativa L.) in the Netherlands, 1987–1993. J Int Hemp Assoc 2: 14–17.Google Scholar
  45. van der Werf, H.M.G., E.W.J.M. Mathijssen & A.J. Haverkort, 1996. The potential of hemp (Cannabis sativa L.) for sustainable fibre production: A crop physiological appraisal. Ann Appl Biol 129: 109–123.CrossRefGoogle Scholar
  46. van der Werf, H.M.G., 2002. Hemp production in France. J Ind Hemp 7 (2): 105–109.Google Scholar
  47. van Zeijts, H. & J.A.W.A. Reus, 1996. Toepassing van LCA voor Agrarische Produkten. 4a. Ervaringen met de methodiek in de case akkerbouw. LEI-DLO, Den Haag, Netherlands.Google Scholar
  48. Wegener Sleeswijk, A., R. Kleijn, M.J.G. Meeusen-van Onna, H. Leneman, H.H.W.J.M. Sengers, H. van Zeijts & J.A.W.A. Reus, 1996. Application of LCA to agricultural products; 1. Core methodological issues; 2. Supplement to the LCA guide; 3. Methodological background. Centre of Environmental Science, Leiden University, Leiden, Netherlands.Google Scholar
  49. WWF, 1999. The impact of cotton on fresh water resources and ecosystems. A preliminary synthesis. Background paper. World Wildlife Fund, Gland, Switserland.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.INRA, UMR SolAgronomie et Spatialisation de Rennes-Quimper, ENSAR - 65,Rennes CedexFrance

Personalised recommendations