Advertisement

Euphytica

, Volume 139, Issue 2, pp 173–178 | Cite as

Microsatellite amplification in Brassica napus cultivars: Cultivar variability and relationship to a long-term feral population

  • J.M. Bond
  • R.J. Mogg
  • G.R. Squire
  • C. Johnstone
Article

Abstract

Data from 83 Brassica microsatellites showed that null alleles, monomorphic loci and the amplification of multiple bands were relatively common. The data we have gathered here are essential for avoiding time consuming and costly optimization procedures. We used the data from 43 primers to assess the relationship between 13 cultivars and one long-term feral population. The established feral population was found to be most similar to, but genetically differentiated from, the winter cultivars. Some feral plants clustered tightly with the winter cultivars, suggesting that only a small proportion of the population was generated from recently spilt seed. Since there was no similarity between the spring cultivars and the feral population, we suggest that a GM trait introduced into a spring cultivar is less likely to persist in the environment.

Key words

Brassica feral genetic differentiation microsatellite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenbach, S.B. et al., 1992. Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 18: 235–245.Google Scholar
  2. Becker, H., G. Engqvist & B. Karlsson, 1995. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91: 62–67.Google Scholar
  3. Bruford, M. & R. Wayne, 1993. Microsatellites and their application to population genetic studies. Curr Opin Genet Dev 3: 939-943.PubMedGoogle Scholar
  4. Clarke, K. & R.N. Gorley, 2001, PRIMER v5: User manual/tutorial, p. 91. Plymouth Marine Laboratory, Plymouth.Google Scholar
  5. Crawley, M. & S. Brown, 1995. Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proc Royal Society London, Series B-Biological Sciences 259: 49–54.Google Scholar
  6. Crawley, M.J., R. Hailes, M. Rees, D. Kohn & J. Buxton, 1993. Ecology of transgenic oilseed rape in natural habitats. Nature 363: 620–623.Google Scholar
  7. Darmency, H., 1994. The impact of hybrids between genetically-modified crop plants and their related species – Introgression and weediness. Mol Ecol 3: 37–40.Google Scholar
  8. Diers, B. & T.C. Osborn, 1994. Genetic diversity of oilseed Brassica napus germ plasm based on restriction fragment length polymorphisms. Theor Appl Genet 88: 662–668.Google Scholar
  9. Eber, F. et al., 1994. Spontaneous hybridization between a male sterile oilseed rape and two weeds. Theor Appl Genet 88: 362–368.Google Scholar
  10. Ge, X. & M. Sun, 1999, Reproductive biology and genetic diversity of a cryptoviviparous mangrove Aegiceras corniculatum (Myrsinaceae) using allozyme and intersimple sequence repeat (ISSR) analysis. Mol Ecol 8: 2061–2069.Google Scholar
  11. Gulden, R., S. Shirtliffe & Thomas, G., 2003. Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci 51: 83–86.Google Scholar
  12. Hailes, R., M. Rees, D. Kohn & M. Crawley, 1997. Burial and seed survivial in Brassica napus Subsp. oleifera and Sinapsis arvensis including a comparision of transgenic and non-transgenetic lines of the crop. Proc Royal Society Of London, Series B-Biological Sciences. 264: 1–7.Google Scholar
  13. Hall, L., K. Topinka, J. Huffman, L. Davis & A. Good, 2000. Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci 48: 688–694.Google Scholar
  14. Krzanowski, W., 1987. Principles of Multivariate Analysis, A User’s Perspective. Clarendon Press, Oxford.Google Scholar
  15. Lagercrantz, U., H. Ellegren & L. Andersson, 1993. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21: 1111–1115.PubMedGoogle Scholar
  16. Lagercrantz, U. & D.J. Lydiate, 1996. Comparative genome mapping in Brassica. Genetics 144: 1903–1910.PubMedGoogle Scholar
  17. Lavigne, C. et al., 1998. A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor Appl Genet 96: 886-896.Google Scholar
  18. Levin, D., 1990. The seed bank as a source of genetic novelty in plants. Am Nat 135: 563–572.Google Scholar
  19. Linder, C. & J. Schmitt, 1994. Assessing the risks of transgene escape through time and crop-wild hybrid persistence. Mol Ecol 3: 23–30.Google Scholar
  20. Lowe, A. et al., 2002. Transferability and genome specificity of a new set of microsatellite primers among Brassica species of the U triangle. Mol Ecol Notes 2: 7–11.Google Scholar
  21. Luikart, G. & P.R. England, 1999. Statistical analysis of microsatellite DNA data. {Trends col Evol.} 14: 253–256.Google Scholar
  22. Lutman, P.J.W., 1993. The occurance and persistence of volunteer oilseed rape (Brassica napus). Aspects Appl Biol 35: 29–36.Google Scholar
  23. Miki, B. et al., 1990. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor Appl Genet 80: 449–458.Google Scholar
  24. Misra, S. & L. Gedamu, 1989. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78: 161–168.Google Scholar
  25. Nei, M. & A. Kumar, 2000. Molecular Evolution and Phylogenetics Oxford University Press, Oxford.Google Scholar
  26. Net, M. & W.-H. Li, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269–5273.Google Scholar
  27. Pessel, F. et al., 2001. Persistence of oilseed rape (Brassica napus L.) outside cultivated fields. Theor Appl Genet 102: 841–846.Google Scholar
  28. Plieske, J. & D. Struss, 2001. Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 102: 689-694.Google Scholar
  29. Queller, D.C., J.E. Strassmann & C.R. Hughes, 1993. Microsatellites and Kinship. Trends Ecol Evol 8: 285.CrossRefGoogle Scholar
  30. Raybould, A.F. & A.J. Gray, 1993. Genetically-modified crops and hybridization with wild relatives - A UK perspective. J Appl Ecol 30: 199–219.Google Scholar
  31. Reboud, X., 2003. Effect of a gap on gene flow between otherwise adjacent transgenic Brassica napus crops. Theor Appl Genet 106: 1048–1058.Google Scholar
  32. Saal, B., J. Plieske, C. Quiros & D. Struss, 2001. Microsatellite markers for genome analysis in Brassica. II Assignment of rapeseed microsatellites to the A and C genomes and genetic mapping in Brassica oleracea L. Theor Appl Genet 102: 695–699.CrossRefGoogle Scholar
  33. Snowdon, R., L. Friedrich, W. Friedt & W. Köuhler, 2002. Identifying the chromosomes of the A- and C- genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet 104: 533–538.CrossRefPubMedGoogle Scholar
  34. Snowdon, R., W. Köuhler, W. Friedt & A. Köuhler, 1997. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet 95: 1320–1324.CrossRefGoogle Scholar
  35. Szewc-McFadden, A., S. Kresovich, S. Bliek, S. Mitchell & J. McFerson, 1996. Identification of polymorphic, conserved simple sequence repeats (SSR’s) in cultivated Brassica species. Theor Appl Genet 93: 534–538.Google Scholar
  36. Timmons, A., E. O’Brien, Y.M. Charters, S. Dubbels & M.J. Wilkinson, 1995. Assessing the risks of wind pollination from fields of genetically modified Brassica napus spp. oleifera. Euphytica 85: 417–423.Google Scholar
  37. Uzunova, M. & W. Ecke, 1999. Abundance, polymorphism and genetic mapping of microsatellites in oilseed rape (Brassica napus L.). Plant Breeding 118: 323–326Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J.M. Bond
    • 1
  • R.J. Mogg
    • 1
    • 2
  • G.R. Squire
    • 1
    • 2
  • C. Johnstone
    • 1
    • 2
  1. 1.Centre for Ecology and HydrologyWinfrith Technology CentreU.K.
  2. 2.Scottish Crop Research InstituteDundeeU.K.

Personalised recommendations