, Volume 79, Issue 4, pp 843–869 | Cite as

A Graded Bayesian Coherence Notion

Original Article


Coherence is a key concept in many accounts of epistemic justification within ‘traditional’ analytic epistemology. Within formal epistemology, too, there is a substantial body of research on coherence measures. However, there has been surprisingly little interaction between the two bodies of literature. The reason is that the existing formal literature on coherence measure operates with a notion of belief system that is very different from—what we argue is—a natural Bayesian formalisation of the concept of belief system from traditional epistemology. Therefore, formal epistemology has so far only been concerned with one particular—arguably not even very natural—way of formalising coherence of belief systems; it has by no means refuted the viability of coherentism. In contrast to the existing literature, we formalise belief systems as families of assignments of (conditional) degrees of belief (which may be compatible with several subjective probability measures). Within this framework, we propose a Bayesian formalisation of the thrust of BonJour’s coherence concept in The structure of empirical knowledge (Harvard University Press, Cambridge, 1985), using a combination of Bayesian confirmation theory and basic graph theory. In excursions, we introduce graded notions for both logical and probabilistic consistency of belief systems—the latter being based on certain geometrical structures induced by probabilistic belief systems. For illustration, we reconsider BonJour’s “ravens” challenge (op. cit., p. 95f.). Finally, potential objections to our proposed formal coherence notion are explored.


Epistemic justification Coherentism (epistemology) Coherence measure Laurence BonJour Bayesianism Bayesian confirmation theory Connectivity (graph theory) Hausdorff measure 



This work was financially supported by the Alexander von Humboldt Foundation through a Visiting Fellowship of the Munich Center for Mathematical Philosophy at Ludwig Maximilian University of Munich. I am deeply grateful to Professor Hannes Leitgeb and Professor Stephan Hartmann for very helpful discussions and comments on an earlier version of this paper. Moreover, I would like to thank Professors David McCarthy, Julian Nida-Rümelin, Ted Poston, Günter Zöller and not least two anonymous referees for their suggestions and comments.


  1. Akiba, K. (2000). Shogenji’s probabilistic measure of coherence is incoherent. Analysis, 60(4), 356–359.CrossRefGoogle Scholar
  2. Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change: Partial meet contraction and revision functions. Journal of Symbolic Logic, 50(2), 510–530.CrossRefGoogle Scholar
  3. Arló-Costa, H., & Parikh, R. (2005). Conditional probability and defeasible inference. Journal of Philosophical Logic, 34(1), 97–119.CrossRefGoogle Scholar
  4. Arló-Costa, H., & Pedersen, A. P. (2012). Belief and probability: A general theory of probability cores. International Journal of Approximate Reasoning, 53(3), 293–315.CrossRefGoogle Scholar
  5. Audi, R. (2011). Epistemology: A contemporary introduction to the theory of knowledge, 3rd ed. Oxford: Routledge.Google Scholar
  6. BonJour, L. (1985). The structure of empirical knowledge. Cambridge, MA: Harvard University Press.Google Scholar
  7. BonJour, L. (2010). The myth of knowledge. Philosophical Perspectives, 24(1), 57–83.CrossRefGoogle Scholar
  8. Bovens, L., & Hartmann S. (2003). Bayesian epistemology. Oxford: Oxford University Press.Google Scholar
  9. Bovens, L., & Hartmann, S. (2003). Solving the riddle of coherence. Mind, 112(448), 601–633.CrossRefGoogle Scholar
  10. Bovens, L., & Hartmann, S. (2005). Why there cannot be a single probabilistic measure of coherence. Erkenntnis, 63(3), 361–374.CrossRefGoogle Scholar
  11. Bovens, L., & Hartmann, S. (2006). An impossibility result for coherence rankings. Philosophical Studies, 128(1), 77–91.CrossRefGoogle Scholar
  12. Brendel, E. (1999). Coherence theory of knowledge: A gradational account. Erkenntnis, 50(2–3), 293–307.CrossRefGoogle Scholar
  13. Carnap, R. (1962). The aim of inductive logic. In E. Nagel, P. Suppes & A. Tarski (Eds.), Logic, methodology and philosophy of science (pp. 303–318). Stanford, CA: Stanford University Press.Google Scholar
  14. Christensen, D. (2004). Putting logic in its place. Oxford: Clarendon Press.CrossRefGoogle Scholar
  15. de Finetti, B. (1937). La prévision: Ses lois logiques, ses sources subjectives. Annales de l’Institut Henri Poincaré, 7(1), 1–68.Google Scholar
  16. de Finetti, B. (1970). Teoria delle probabilità: Sintesi introduttiva con appendice critica. Volumi primo e secondo. Nuova Biblioteca Scientifica Einaudi. Giulio Einaudi Editore, Turin.Google Scholar
  17. de Finetti, B. (1974). Theory of probability: A critical introductory treatment. Vol. 1. Translated by Antonio Machì and Adrian Smith, with a foreword by D. V. Lindley. Wiley series in probability and mathematical statistics. London, New York, Sydney: Wiley.Google Scholar
  18. Diestel, R. (2010). Graph theory, volume 173 of graduate texts in mathematics, 4 ed. Heidelberg: Springer.Google Scholar
  19. Dietrich, F., & Moretti, L. (2005). On coherent sets and the transmission of confirmation. Philosophy of Science, 72(3), 403–424.CrossRefGoogle Scholar
  20. Dirac, G. A. (1963). Extensions of Menger’s theorem. Journal of the London Mathematical Society, 38, 148–161.CrossRefGoogle Scholar
  21. Dirac, G. A. (1966). Short proof of Menger’s graph theorem. Mathematika, 13, 42–44.CrossRefGoogle Scholar
  22. Douven, I., & Meijs, W. (2006). Bootstrap confirmation made quantitative. Synthese, 149(1), 97–132.CrossRefGoogle Scholar
  23. Easwaran, K., & Fitelson, B. (2012). An “evidentialist” worry about Joyce’s argument for probabilism. Dialectica, 66(3), 425–433.CrossRefGoogle Scholar
  24. Fajardo, S., & Keisler, H. J. (2002). Model theory of stochastic processes, volume 14 of Lecture Notes in Logic. A.K. Peters, Natick, MA.Google Scholar
  25. Fitelson, B. (2003). A probabilistic theory of coherence. Analysis, 63(3), 194–199.CrossRefGoogle Scholar
  26. Fitelson, B., & McCarthy, D. (2012). Steps toward a new foundation for subjective probability. Work in progress, Munich Center for Mathematical Philosophy.Google Scholar
  27. Foley, R. (2009). Beliefs, degrees of belief, and the lockean thesis. In F. Huber & C. Schmidt-Petri (Eds.), Degrees of belief, volume 342 of synthese library (pp. 37–47). Dordrecht: Springer.Google Scholar
  28. Fumerton, R. (2006). Epistemology. Oxford: Blackwell.Google Scholar
  29. Glymour, C. (1980). Theory and evidence. Princeton, NJ: Princeton University Press.Google Scholar
  30. Grünwald, T. (1938). Ein neuer Beweis eines Mengerschen Satzes. Journal of the London Mathematical Society, 13, 188–192.CrossRefGoogle Scholar
  31. Hájek, A. (2012). Staying regular? Conference paper, 9th annual formal epistemology workshop.Google Scholar
  32. Hansson, S. O., & Olsson, E. J. (1999). Providing foundations for coherentism. Erkenntnis, 51(2–3), 243–265.CrossRefGoogle Scholar
  33. Hausdorff, F. (1918). Dimension und äußeres Maß. Mathematische Annalen, 79(1–2), 157–179.CrossRefGoogle Scholar
  34. Herzberg, F. S. (2008). A definable nonstandard enlargement. Mathematical Logic Quarterly, 54(2), 167–175.CrossRefGoogle Scholar
  35. Herzberg, F. S. (2008). Addendum to “A definable nonstandard enlargement”. Mathematical Logic Quarterly, 54(6), 666–667.CrossRefGoogle Scholar
  36. Herzberg, F. S. (2010). The consistency of probabilistic regresses. A reply to Jeanne Peijnenburg and David Atkinson. Studia Logica, 94(3), 331–345.CrossRefGoogle Scholar
  37. Herzberg, F. S. (2013). The consistency of probabilistic regresses: Some implications for epistemological infinitism. Erkenntnis, 78(2), 371–382.CrossRefGoogle Scholar
  38. Herzberg, F. S. (2013). The dialectics of infinitism and coherentism: Inferential justification versus holism and coherence. Synthese, (forthcoming). doi: 10.1007/s11229-013-0273-5.
  39. Joyce, J. M. (2009). Accuracy and coherence: Prospects for an alethic epistemology of partial belief. In: F. Huber, C. Schmidt-Petri (Eds.), Degrees of belief, volume 342 of synthese library (pp. 263–297). Dordrecht: Springer.Google Scholar
  40. Kanovei, V., Reeken, M. (2004). Nonstandard analysis, axiomatically. Springer monographs in mathematics. Berlin: Springer.CrossRefGoogle Scholar
  41. Kanovei, V., & Shelah, S. (2004). A definable nonstandard model of the reals. Journal of Symbolic Logic, 69(1), 159–164.CrossRefGoogle Scholar
  42. Kőnig, D. (1933). Über trennende Knotenpunkte in Graphen (nebst Anwendungen auf Determinanten und Matrizen). Acta Litterarum ac Scientiarum (Szeged), 6(2–3), 155–179.Google Scholar
  43. Klein, P., & Warfield, T. A. (1994). What price coherence? Analysis, 54(3), 129–132.CrossRefGoogle Scholar
  44. Klein, P., & Warfield, T. A. (1996). No help for the coherentist. Analysis, 56(2), 118–121.CrossRefGoogle Scholar
  45. Lehrer, K. (2000). Theory of knowledge. Boulder, CO: Westview Press.Google Scholar
  46. Leitgeb, H. (2010). Reducing belief simpliciter to degrees of belief. Manuscript, University of Bristol.Google Scholar
  47. Leitgeb, H., & Pettigrew, R. (2010). An objective justification of Bayesianism I. Measuring inaccuracy. Philosophy of Science, 77(2), 201–235.CrossRefGoogle Scholar
  48. Leitgeb, H., & Pettigrew, R. (2010). An objective justification of Bayesianism II. The consequences of minimizing inaccuracy. Philosophy of Science, 77(2), 236–272.CrossRefGoogle Scholar
  49. Lewis, C. I. (1946). An analysis of knowledge and valuation. Open Court, LaSalle, IL.Google Scholar
  50. Locke, J. (1979). In P. H. Nidditch (Ed.), An essay concerning human understanding. Oxford: Oxford University Press.Google Scholar
  51. Makinson, D. C. (1965). The paradox of the preface. Analysis, 25(6), 205–207.CrossRefGoogle Scholar
  52. Meijs, W., & Douven, I. (2007). On the alleged impossibility of coherence. Synthese, 157(3), 347–360.CrossRefGoogle Scholar
  53. Menger, K. (1927). Zur allgemeinen Kurventheorie. Fundamenta Mathematica, 10, 96–115.Google Scholar
  54. Miller, D. W. (forthcoming). Popper’s contributions to the theory of probability and its interpretation. In The Cambridge companion to popper. Cambridge: Cambridge University Press.Google Scholar
  55. Moretti, L., & Akiba, K. (2007). Probabilistic measures of coherence and the problem of belief individuation. Synthese, 154(1), 73–95.CrossRefGoogle Scholar
  56. Olsson, E. J. (2002). What is the problem of coherence and truth? Journal of Philosophy, 99(5), 246–272.CrossRefGoogle Scholar
  57. Olsson, E. J. (2005). Against coherence: Truth, probability, and justification. Oxford: Oxford University Press.CrossRefGoogle Scholar
  58. Olsson, E. J. (2005). The impossibility of coherence. Erkenntnis, 63(3), 387–412 (2006).Google Scholar
  59. Pollock, J. L. (1986). The paradox of the preface. Philosophy of Science, 53(2), 246–258.CrossRefGoogle Scholar
  60. Popper, K., & Miller, D. W. (1987). Why probabilistic support is not inductive. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 321(1562), 569–591.CrossRefGoogle Scholar
  61. Quine, W. V. O., & Ullian, J. (1970). The web of belief. New York: Random House.Google Scholar
  62. Rényi, A. (1955). On a new axiomatic theory of probability. Acta Mathematica Academiae Scientiarum Hungaricae, 6, 285–335.CrossRefGoogle Scholar
  63. Robinson, A. (1961). Non-standard analysis. Nederlandse Akademie van Wetenschappen. Proceedings. Series A. Indagationes Mathematicae, 64, 432–440.Google Scholar
  64. Robinson, A. (1996). Non-standard analysis. Princeton landmarks in mathematics. Princeton, NJ: Princeton University Press.Google Scholar
  65. Schupbach, J. N. (2008). On the alleged impossibility of Bayesian coherentism. Philosophical Studies, 141(3), 323–331.CrossRefGoogle Scholar
  66. Shogenji, T. (1999). Is coherence truth conducive? Analysis, 59(4), 338–345.CrossRefGoogle Scholar
  67. Siebel, M., & Wolff, W. (2008). Equivalent testimonies as a touchstone of coherence measures. Synthese, 161(2), 167–182.CrossRefGoogle Scholar
  68. Stone, M. H. (1936). The theory of representations for Boolean algebras. Transactions of the American Mathematical Society, 40(1), 37–111.Google Scholar
  69. Walley, P. (1991). Statistical reasoning with imprecise probabilities, volume 42 of monographs on statistics and applied probability. London: Chapman and Hall.CrossRefGoogle Scholar
  70. Walley, P. (2000). Towards a unified theory of imprecise probability. International Journal of Approximate Reasoning, 24(2–3), 125–148.CrossRefGoogle Scholar
  71. Wedgwood, R. (2012). Outright belief. Dialectica, 66(3), 309–329.CrossRefGoogle Scholar
  72. Weichselberger, K. (2000). The theory of interval-probability as a unifying concept for uncertainty. International Journal of Approximate Reasoning, 24(2–3), 149–170.CrossRefGoogle Scholar
  73. Whitney, H. (1932). Congruent graphs and the connectivity of graphs. American Journal of Mathematics, 54(1), 150–168.CrossRefGoogle Scholar
  74. Wittgenstein, L. (1969). On certainty. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Chair of Logic and Philosophy of Language, Munich Center for Mathematical Philosophy, Faculty of Philosophy, Philosophy of Science and Study of ReligionLudwig Maximilian University of MunichMunichGermany
  2. 2.Center for Mathematical EconomicsBielefeld UniversityBielefeldGermany

Personalised recommendations